| 
  12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 
 | 
      SUBROUTINE DTRSEN( JOB, COMPQ, SELECT, N, T, LDT, Q, LDQ, WR, WI,$                   M, S, SEP, WORK, LWORK, IWORK, LIWORK, INFO )
 *
 *  -- LAPACK routine (version 3.3.1) --
 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 *  -- April 2011                                                      --
 *
 *     .. Scalar Arguments ..
 CHARACTER          COMPQ, JOB
 INTEGER            INFO, LDQ, LDT, LIWORK, LWORK, M, N
 DOUBLE PRECISION   S, SEP
 *     ..
 *     .. Array Arguments ..
 LOGICAL            SELECT( * )
 INTEGER            IWORK( * )
 DOUBLE PRECISION   Q( LDQ, * ), T( LDT, * ), WI( * ), WORK( * ),
 $                   WR( * )
 *     ..
 *
 *  Purpose
 *  =======
 *
 *  DTRSEN reorders the real Schur factorization of a real matrix
 *  A = Q*T*Q**T, so that a selected cluster of eigenvalues appears in
 *  the leading diagonal blocks of the upper quasi-triangular matrix T,
 *  and the leading columns of Q form an orthonormal basis of the
 *  corresponding right invariant subspace.
 *
 *  Optionally the routine computes the reciprocal condition numbers of
 *  the cluster of eigenvalues and/or the invariant subspace.
 *
 *  T must be in Schur canonical form (as returned by DHSEQR), that is,
 *  block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each
 *  2-by-2 diagonal block has its diagonal elemnts equal and its
 *  off-diagonal elements of opposite sign.
 *
 *  Arguments
 *  =========
 *
 *  JOB     (input) CHARACTER*1
 *          Specifies whether condition numbers are required for the
 *          cluster of eigenvalues (S) or the invariant subspace (SEP):
 *          = 'N': none;
 *          = 'E': for eigenvalues only (S);
 *          = 'V': for invariant subspace only (SEP);
 *          = 'B': for both eigenvalues and invariant subspace (S and
 *                 SEP).
 *
 *  COMPQ   (input) CHARACTER*1
 *          = 'V': update the matrix Q of Schur vectors;
 *          = 'N': do not update Q.
 *
 *  SELECT  (input) LOGICAL array, dimension (N)
 *          SELECT specifies the eigenvalues in the selected cluster. To
 *          select a real eigenvalue w(j), SELECT(j) must be set to
 *          .TRUE.. To select a complex conjugate pair of eigenvalues
 *          w(j) and w(j+1), corresponding to a 2-by-2 diagonal block,
 *          either SELECT(j) or SELECT(j+1) or both must be set to
 *          .TRUE.; a complex conjugate pair of eigenvalues must be
 *          either both included in the cluster or both excluded.
 *
 *  N       (input) INTEGER
 *          The order of the matrix T. N >= 0.
 *
 *  T       (input/output) DOUBLE PRECISION array, dimension (LDT,N)
 *          On entry, the upper quasi-triangular matrix T, in Schur
 *          canonical form.
 *          On exit, T is overwritten by the reordered matrix T, again in
 *          Schur canonical form, with the selected eigenvalues in the
 *          leading diagonal blocks.
 *
 *  LDT     (input) INTEGER
 *          The leading dimension of the array T. LDT >= max(1,N).
 *
 *  Q       (input/output) DOUBLE PRECISION array, dimension (LDQ,N)
 *          On entry, if COMPQ = 'V', the matrix Q of Schur vectors.
 *          On exit, if COMPQ = 'V', Q has been postmultiplied by the
 *          orthogonal transformation matrix which reorders T; the
 *          leading M columns of Q form an orthonormal basis for the
 *          specified invariant subspace.
 *          If COMPQ = 'N', Q is not referenced.
 *
 *  LDQ     (input) INTEGER
 *          The leading dimension of the array Q.
 *          LDQ >= 1; and if COMPQ = 'V', LDQ >= N.
 *
 *  WR      (output) DOUBLE PRECISION array, dimension (N)
 *  WI      (output) DOUBLE PRECISION array, dimension (N)
 *          The real and imaginary parts, respectively, of the reordered
 *          eigenvalues of T. The eigenvalues are stored in the same
 *          order as on the diagonal of T, with WR(i) = T(i,i) and, if
 *          T(i:i+1,i:i+1) is a 2-by-2 diagonal block, WI(i) > 0 and
 *          WI(i+1) = -WI(i). Note that if a complex eigenvalue is
 *          sufficiently ill-conditioned, then its value may differ
 *          significantly from its value before reordering.
 *
 *  M       (output) INTEGER
 *          The dimension of the specified invariant subspace.
 *          0 < = M <= N.
 *
 *  S       (output) DOUBLE PRECISION
 *          If JOB = 'E' or 'B', S is a lower bound on the reciprocal
 *          condition number for the selected cluster of eigenvalues.
 *          S cannot underestimate the true reciprocal condition number
 *          by more than a factor of sqrt(N). If M = 0 or N, S = 1.
 *          If JOB = 'N' or 'V', S is not referenced.
 *
 *  SEP     (output) DOUBLE PRECISION
 *          If JOB = 'V' or 'B', SEP is the estimated reciprocal
 *          condition number of the specified invariant subspace. If
 *          M = 0 or N, SEP = norm(T).
 *          If JOB = 'N' or 'E', SEP is not referenced.
 *
 *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
 *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 *
 *  LWORK   (input) INTEGER
 *          The dimension of the array WORK.
 *          If JOB = 'N', LWORK >= max(1,N);
 *          if JOB = 'E', LWORK >= max(1,M*(N-M));
 *          if JOB = 'V' or 'B', LWORK >= max(1,2*M*(N-M)).
 *
 *          If LWORK = -1, then a workspace query is assumed; the routine
 *          only calculates the optimal size of the WORK array, returns
 *          this value as the first entry of the WORK array, and no error
 *          message related to LWORK is issued by XERBLA.
 *
 *  IWORK   (workspace) INTEGER array, dimension (MAX(1,LIWORK))
 *          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
 *
 *  LIWORK  (input) INTEGER
 *          The dimension of the array IWORK.
 *          If JOB = 'N' or 'E', LIWORK >= 1;
 *          if JOB = 'V' or 'B', LIWORK >= max(1,M*(N-M)).
 *
 *          If LIWORK = -1, then a workspace query is assumed; the
 *          routine only calculates the optimal size of the IWORK array,
 *          returns this value as the first entry of the IWORK array, and
 *          no error message related to LIWORK is issued by XERBLA.
 *
 *  INFO    (output) INTEGER
 *          = 0: successful exit
 *          < 0: if INFO = -i, the i-th argument had an illegal value
 *          = 1: reordering of T failed because some eigenvalues are too
 *               close to separate (the problem is very ill-conditioned);
 *               T may have been partially reordered, and WR and WI
 *               contain the eigenvalues in the same order as in T; S and
 *               SEP (if requested) are set to zero.
 *
 *  Further Details
 *  ===============
 *
 *  DTRSEN first collects the selected eigenvalues by computing an
 *  orthogonal transformation Z to move them to the top left corner of T.
 *  In other words, the selected eigenvalues are the eigenvalues of T11
 *  in:
 *
 *          Z**T * T * Z = ( T11 T12 ) n1
 *                         (  0  T22 ) n2
 *                            n1  n2
 *
 *  where N = n1+n2 and Z**T means the transpose of Z. The first n1 columns
 *  of Z span the specified invariant subspace of T.
 *
 *  If T has been obtained from the real Schur factorization of a matrix
 *  A = Q*T*Q**T, then the reordered real Schur factorization of A is given
 *  by A = (Q*Z)*(Z**T*T*Z)*(Q*Z)**T, and the first n1 columns of Q*Z span
 *  the corresponding invariant subspace of A.
 *
 *  The reciprocal condition number of the average of the eigenvalues of
 *  T11 may be returned in S. S lies between 0 (very badly conditioned)
 *  and 1 (very well conditioned). It is computed as follows. First we
 *  compute R so that
 *
 *                         P = ( I  R ) n1
 *                             ( 0  0 ) n2
 *                               n1 n2
 *
 *  is the projector on the invariant subspace associated with T11.
 *  R is the solution of the Sylvester equation:
 *
 *                        T11*R - R*T22 = T12.
 *
 *  Let F-norm(M) denote the Frobenius-norm of M and 2-norm(M) denote
 *  the two-norm of M. Then S is computed as the lower bound
 *
 *                      (1 + F-norm(R)**2)**(-1/2)
 *
 *  on the reciprocal of 2-norm(P), the true reciprocal condition number.
 *  S cannot underestimate 1 / 2-norm(P) by more than a factor of
 *  sqrt(N).
 *
 *  An approximate error bound for the computed average of the
 *  eigenvalues of T11 is
 *
 *                         EPS * norm(T) / S
 *
 *  where EPS is the machine precision.
 *
 *  The reciprocal condition number of the right invariant subspace
 *  spanned by the first n1 columns of Z (or of Q*Z) is returned in SEP.
 *  SEP is defined as the separation of T11 and T22:
 *
 *                     sep( T11, T22 ) = sigma-min( C )
 *
 *  where sigma-min(C) is the smallest singular value of the
 *  n1*n2-by-n1*n2 matrix
 *
 *     C  = kprod( I(n2), T11 ) - kprod( transpose(T22), I(n1) )
 *
 *  I(m) is an m by m identity matrix, and kprod denotes the Kronecker
 *  product. We estimate sigma-min(C) by the reciprocal of an estimate of
 *  the 1-norm of inverse(C). The true reciprocal 1-norm of inverse(C)
 *  cannot differ from sigma-min(C) by more than a factor of sqrt(n1*n2).
 *
 *  When SEP is small, small changes in T can cause large changes in
 *  the invariant subspace. An approximate bound on the maximum angular
 *  error in the computed right invariant subspace is
 *
 *                      EPS * norm(T) / SEP
 *
 *  =====================================================================
 *
 *     .. Parameters ..
 DOUBLE PRECISION   ZERO, ONE
 PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 *     ..
 *     .. Local Scalars ..
 LOGICAL            LQUERY, PAIR, SWAP, WANTBH, WANTQ, WANTS,
 $                   WANTSP
 INTEGER            IERR, K, KASE, KK, KS, LIWMIN, LWMIN, N1, N2,
 $                   NN
 DOUBLE PRECISION   EST, RNORM, SCALE
 *     ..
 *     .. Local Arrays ..
 INTEGER            ISAVE( 3 )
 *     ..
 *     .. External Functions ..
 LOGICAL            LSAME
 DOUBLE PRECISION   DLANGE
 EXTERNAL           LSAME, DLANGE
 *     ..
 *     .. External Subroutines ..
 EXTERNAL           DLACN2, DLACPY, DTREXC, DTRSYL, XERBLA
 *     ..
 *     .. Intrinsic Functions ..
 INTRINSIC          ABS, MAX, SQRT
 *     ..
 *     .. Executable Statements ..
 *
 *     Decode and test the input parameters
 *
 WANTBH = LSAME( JOB, 'B' )
 WANTS = LSAME( JOB, 'E' ) .OR. WANTBH
 WANTSP = LSAME( JOB, 'V' ) .OR. WANTBH
 WANTQ = LSAME( COMPQ, 'V' )
 *
 INFO = 0
 LQUERY = ( LWORK.EQ.-1 )
 IF( .NOT.LSAME( JOB, 'N' ) .AND. .NOT.WANTS .AND. .NOT.WANTSP )
 $     THEN
 INFO = -1
 ELSE IF( .NOT.LSAME( COMPQ, 'N' ) .AND. .NOT.WANTQ ) THEN
 INFO = -2
 ELSE IF( N.LT.0 ) THEN
 INFO = -4
 ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
 INFO = -6
 ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
 INFO = -8
 ELSE
 *
 *        Set M to the dimension of the specified invariant subspace,
 *        and test LWORK and LIWORK.
 *
 M = 0
 PAIR = .FALSE.
 DO 10 K = 1, N
 IF( PAIR ) THEN
 PAIR = .FALSE.
 ELSE
 IF( K.LT.N ) THEN
 IF( T( K+1, K ).EQ.ZERO ) THEN
 IF( SELECT( K ) )
 $                  M = M + 1
 ELSE
 PAIR = .TRUE.
 IF( SELECT( K ) .OR. SELECT( K+1 ) )
 $                  M = M + 2
 END IF
 ELSE
 IF( SELECT( N ) )
 $               M = M + 1
 END IF
 END IF
 10    CONTINUE
 *
 N1 = M
 N2 = N - M
 NN = N1*N2
 *
 IF( WANTSP ) THEN
 LWMIN = MAX( 1, 2*NN )
 LIWMIN = MAX( 1, NN )
 ELSE IF( LSAME( JOB, 'N' ) ) THEN
 LWMIN = MAX( 1, N )
 LIWMIN = 1
 ELSE IF( LSAME( JOB, 'E' ) ) THEN
 LWMIN = MAX( 1, NN )
 LIWMIN = 1
 END IF
 *
 IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
 INFO = -15
 ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
 INFO = -17
 END IF
 END IF
 *
 IF( INFO.EQ.0 ) THEN
 WORK( 1 ) = LWMIN
 IWORK( 1 ) = LIWMIN
 END IF
 *
 IF( INFO.NE.0 ) THEN
 CALL XERBLA( 'DTRSEN', -INFO )
 RETURN
 ELSE IF( LQUERY ) THEN
 RETURN
 END IF
 *
 *     Quick return if possible.
 *
 IF( M.EQ.N .OR. M.EQ.0 ) THEN
 IF( WANTS )
 $      S = ONE
 IF( WANTSP )
 $      SEP = DLANGE( '1', N, N, T, LDT, WORK )
 GO TO 40
 END IF
 *
 *     Collect the selected blocks at the top-left corner of T.
 *
 KS = 0
 PAIR = .FALSE.
 DO 20 K = 1, N
 IF( PAIR ) THEN
 PAIR = .FALSE.
 ELSE
 SWAP = SELECT( K )
 IF( K.LT.N ) THEN
 IF( T( K+1, K ).NE.ZERO ) THEN
 PAIR = .TRUE.
 SWAP = SWAP .OR. SELECT( K+1 )
 END IF
 END IF
 IF( SWAP ) THEN
 KS = KS + 1
 *
 *              Swap the K-th block to position KS.
 *
 IERR = 0
 KK = K
 IF( K.NE.KS )
 $            CALL DTREXC( COMPQ, N, T, LDT, Q, LDQ, KK, KS, WORK,
 $                         IERR )
 IF( IERR.EQ.1 .OR. IERR.EQ.2 ) THEN
 *
 *                 Blocks too close to swap: exit.
 *
 INFO = 1
 IF( WANTS )
 $               S = ZERO
 IF( WANTSP )
 $               SEP = ZERO
 GO TO 40
 END IF
 IF( PAIR )
 $            KS = KS + 1
 END IF
 END IF
 20 CONTINUE
 *
 IF( WANTS ) THEN
 *
 *        Solve Sylvester equation for R:
 *
 *           T11*R - R*T22 = scale*T12
 *
 CALL DLACPY( 'F', N1, N2, T( 1, N1+1 ), LDT, WORK, N1 )
 CALL DTRSYL( 'N', 'N', -1, N1, N2, T, LDT, T( N1+1, N1+1 ),
 $                LDT, WORK, N1, SCALE, IERR )
 *
 *        Estimate the reciprocal of the condition number of the cluster
 *        of eigenvalues.
 *
 RNORM = DLANGE( 'F', N1, N2, WORK, N1, WORK )
 IF( RNORM.EQ.ZERO ) THEN
 S = ONE
 ELSE
 S = SCALE / ( SQRT( SCALE*SCALE / RNORM+RNORM )*
 $          SQRT( RNORM ) )
 END IF
 END IF
 *
 IF( WANTSP ) THEN
 *
 *        Estimate sep(T11,T22).
 *
 EST = ZERO
 KASE = 0
 30    CONTINUE
 CALL DLACN2( NN, WORK( NN+1 ), WORK, IWORK, EST, KASE, ISAVE )
 IF( KASE.NE.0 ) THEN
 IF( KASE.EQ.1 ) THEN
 *
 *              Solve  T11*R - R*T22 = scale*X.
 *
 CALL DTRSYL( 'N', 'N', -1, N1, N2, T, LDT,
 $                      T( N1+1, N1+1 ), LDT, WORK, N1, SCALE,
 $                      IERR )
 ELSE
 *
 *              Solve T11**T*R - R*T22**T = scale*X.
 *
 CALL DTRSYL( 'T', 'T', -1, N1, N2, T, LDT,
 $                      T( N1+1, N1+1 ), LDT, WORK, N1, SCALE,
 $                      IERR )
 END IF
 GO TO 30
 END IF
 *
 SEP = SCALE / EST
 END IF
 *
 40 CONTINUE
 *
 *     Store the output eigenvalues in WR and WI.
 *
 DO 50 K = 1, N
 WR( K ) = T( K, K )
 WI( K ) = ZERO
 50 CONTINUE
 DO 60 K = 1, N - 1
 IF( T( K+1, K ).NE.ZERO ) THEN
 WI( K ) = SQRT( ABS( T( K, K+1 ) ) )*
 $                SQRT( ABS( T( K+1, K ) ) )
 WI( K+1 ) = -WI( K )
 END IF
 60 CONTINUE
 *
 WORK( 1 ) = LWMIN
 IWORK( 1 ) = LIWMIN
 *
 RETURN
 *
 *     End of DTRSEN
 *
 END
 
 |