1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
     225
     226
     227
     228
     229
     230
     231
     232
     233
     234
     235
     236
     237
     238
     239
     240
     241
     242
     243
     244
     245
     246
     247
     248
     249
     250
     251
     252
     253
     254
     255
     256
     257
     258
     259
     260
     261
     262
     263
     264
     265
     266
     267
     268
     269
     270
     271
     272
     273
     274
     275
     276
     277
     278
     279
     280
     281
     282
     283
     284
     285
     286
     287
     288
     289
     290
     291
     292
     293
     294
     295
     296
     297
     298
     299
     300
     301
     302
     303
     304
     305
     306
     307
     308
     309
     310
     311
     312
     313
     314
     315
     316
     317
     318
     319
     320
     321
     322
     323
     324
     325
     326
     327
     328
     329
     330
     331
     332
     333
     334
     335
     336
     337
     338
     339
     340
     341
     342
     343
     344
     345
     346
     347
     348
     349
     350
     351
     352
     353
     354
     355
     356
     357
     358
     359
     360
     361
     362
     363
     364
     365
     366
     367
     368
     369
     370
     371
     372
     373
     374
     375
     376
     377
     378
     379
     380
     381
     382
     383
     384
     385
     386
     387
     388
     389
     390
     391
     392
     393
     394
     395
     396
     397
     398
     399
     400
     401
     402
     403
     404
     405
     406
     407
     408
     409
     410
     411
     412
     413
     414
     415
     416
     417
     418
     419
     420
     421
     422
     423
     424
     425
     426
     427
     428
     429
     430
     431
     432
     433
     434
     435
     436
     437
     438
     439
     440
     441
     442
     443
     444
     445
     446
     447
     448
     449
     450
     451
     452
     453
     454
     455
     456
     457
     458
     459
     460
     461
     462
     463
     464
     465
     466
     467
     468
     469
     470
     471
     472
     473
     474
     475
     476
     477
     478
     479
     480
     481
     482
     483
     484
     485
     486
     487
     488
     489
     490
     491
     492
     493
     494
     495
     496
     497
     498
     499
     500
     501
     502
     503
     504
     505
     506
     507
     508
     509
     510
     511
     512
     513
     514
     515
     516
     517
     518
     519
     520
     521
     522
     523
     524
     525
     526
     527
     528
     529
     530
     531
     532
     533
     534
     535
     536
     537
     538
     539
     540
     541
     542
     543
      SUBROUTINE SGELSD( M, N, NRHS, A, LDA, B, LDB, S, RCOND,
     $                   RANK, WORK, LWORK, IWORK, INFO )
*
*  -- LAPACK driver routine (version 3.2) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2006
*
*     .. Scalar Arguments ..
      INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
      REAL               RCOND
*     ..
*     .. Array Arguments ..
      INTEGER            IWORK( * )
      REAL               A( LDA, * ), B( LDB, * ), S( * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  SGELSD computes the minimum-norm solution to a real linear least
*  squares problem:
*      minimize 2-norm(| b - A*x |)
*  using the singular value decomposition (SVD) of A. A is an M-by-N
*  matrix which may be rank-deficient.
*
*  Several right hand side vectors b and solution vectors x can be
*  handled in a single call; they are stored as the columns of the
*  M-by-NRHS right hand side matrix B and the N-by-NRHS solution
*  matrix X.
*
*  The problem is solved in three steps:
*  (1) Reduce the coefficient matrix A to bidiagonal form with
*      Householder transformations, reducing the original problem
*      into a "bidiagonal least squares problem" (BLS)
*  (2) Solve the BLS using a divide and conquer approach.
*  (3) Apply back all the Householder tranformations to solve
*      the original least squares problem.
*
*  The effective rank of A is determined by treating as zero those
*  singular values which are less than RCOND times the largest singular
*  value.
*
*  The divide and conquer algorithm makes very mild assumptions about
*  floating point arithmetic. It will work on machines with a guard
*  digit in add/subtract, or on those binary machines without guard
*  digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
*  Cray-2. It could conceivably fail on hexadecimal or decimal machines
*  without guard digits, but we know of none.
*
*  Arguments
*  =========
*
*  M       (input) INTEGER
*          The number of rows of A. M >= 0.
*
*  N       (input) INTEGER
*          The number of columns of A. N >= 0.
*
*  NRHS    (input) INTEGER
*          The number of right hand sides, i.e., the number of columns
*          of the matrices B and X. NRHS >= 0.
*
*  A       (input) REAL array, dimension (LDA,N)
*          On entry, the M-by-N matrix A.
*          On exit, A has been destroyed.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,M).
*
*  B       (input/output) REAL array, dimension (LDB,NRHS)
*          On entry, the M-by-NRHS right hand side matrix B.
*          On exit, B is overwritten by the N-by-NRHS solution
*          matrix X.  If m >= n and RANK = n, the residual
*          sum-of-squares for the solution in the i-th column is given
*          by the sum of squares of elements n+1:m in that column.
*
*  LDB     (input) INTEGER
*          The leading dimension of the array B. LDB >= max(1,max(M,N)).
*
*  S       (output) REAL array, dimension (min(M,N))
*          The singular values of A in decreasing order.
*          The condition number of A in the 2-norm = S(1)/S(min(m,n)).
*
*  RCOND   (input) REAL
*          RCOND is used to determine the effective rank of A.
*          Singular values S(i) <= RCOND*S(1) are treated as zero.
*          If RCOND < 0, machine precision is used instead.
*
*  RANK    (output) INTEGER
*          The effective rank of A, i.e., the number of singular values
*          which are greater than RCOND*S(1).
*
*  WORK    (workspace/output) REAL array, dimension (MAX(1,LWORK))
*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
*  LWORK   (input) INTEGER
*          The dimension of the array WORK. LWORK must be at least 1.
*          The exact minimum amount of workspace needed depends on M,
*          N and NRHS. As long as LWORK is at least
*              12*N + 2*N*SMLSIZ + 8*N*NLVL + N*NRHS + (SMLSIZ+1)**2,
*          if M is greater than or equal to N or
*              12*M + 2*M*SMLSIZ + 8*M*NLVL + M*NRHS + (SMLSIZ+1)**2,
*          if M is less than N, the code will execute correctly.
*          SMLSIZ is returned by ILAENV and is equal to the maximum
*          size of the subproblems at the bottom of the computation
*          tree (usually about 25), and
*             NLVL = MAX( 0, INT( LOG_2( MIN( M,N )/(SMLSIZ+1) ) ) + 1 )
*          For good performance, LWORK should generally be larger.
*
*          If LWORK = -1, then a workspace query is assumed; the routine
*          only calculates the optimal size of the array WORK and the
*          minimum size of the array IWORK, and returns these values as
*          the first entries of the WORK and IWORK arrays, and no error
*          message related to LWORK is issued by XERBLA.
*
*  IWORK   (workspace) INTEGER array, dimension (MAX(1,LIWORK))
*          LIWORK >= max(1, 3*MINMN*NLVL + 11*MINMN),
*          where MINMN = MIN( M,N ).
*          On exit, if INFO = 0, IWORK(1) returns the minimum LIWORK.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value.
*          > 0:  the algorithm for computing the SVD failed to converge;
*                if INFO = i, i off-diagonal elements of an intermediate
*                bidiagonal form did not converge to zero.
*
*  Further Details
*  ===============
*
*  Based on contributions by
*     Ming Gu and Ren-Cang Li, Computer Science Division, University of
*       California at Berkeley, USA
*     Osni Marques, LBNL/NERSC, USA
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE, TWO
      PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0, TWO = 2.0E0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            LQUERY
      INTEGER            IASCL, IBSCL, IE, IL, ITAU, ITAUP, ITAUQ,
     $                   LDWORK, LIWORK, MAXMN, MAXWRK, MINMN, MINWRK,
     $                   MM, MNTHR, NLVL, NWORK, SMLSIZ, WLALSD
      REAL               ANRM, BIGNUM, BNRM, EPS, SFMIN, SMLNUM
*     ..
*     .. External Subroutines ..
      EXTERNAL           SGEBRD, SGELQF, SGEQRF, SLABAD, SLACPY, SLALSD,
     $                   SLASCL, SLASET, SORMBR, SORMLQ, SORMQR, XERBLA
*     ..
*     .. External Functions ..
      INTEGER            ILAENV
      REAL               SLAMCH, SLANGE
      EXTERNAL           SLAMCH, SLANGE, ILAENV
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          INTLOGMAXMIN, REAL
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments.
*
      INFO = 0
      MINMN = MIN( M, N )
      MAXMN = MAX( M, N )
      LQUERY = ( LWORK.EQ.-1 )
      IF( M.LT.0 ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( NRHS.LT.0 ) THEN
         INFO = -3
      ELSE IF( LDA.LT.MAX1, M ) ) THEN
         INFO = -5
      ELSE IF( LDB.LT.MAX1, MAXMN ) ) THEN
         INFO = -7
      END IF
*
*     Compute workspace.
*     (Note: Comments in the code beginning "Workspace:" describe the
*     minimal amount of workspace needed at that point in the code,
*     as well as the preferred amount for good performance.
*     NB refers to the optimal block size for the immediately
*     following subroutine, as returned by ILAENV.)
*
      IF( INFO.EQ.0 ) THEN
         MINWRK = 1
         MAXWRK = 1
         LIWORK = 1
         IF( MINMN.GT.0 ) THEN
            SMLSIZ = ILAENV( 9'SGELSD'' '0000 )
            MNTHR = ILAENV( 6'SGELSD'' ', M, N, NRHS, -1 )
            NLVL = MAXINTLOGREAL( MINMN ) / REAL( SMLSIZ + 1 ) ) /
     $                  LOG( TWO ) ) + 10 )
            LIWORK = 3*MINMN*NLVL + 11*MINMN
            MM = M
            IF( M.GE..AND. M.GE.MNTHR ) THEN
*
*              Path 1a - overdetermined, with many more rows than
*                        columns.
*
               MM = N
               MAXWRK = MAX( MAXWRK, N + N*ILAENV( 1'SGEQRF'' ', M,
     $                       N, -1-1 ) )
               MAXWRK = MAX( MAXWRK, N + NRHS*ILAENV( 1'SORMQR''LT',
     $                       M, NRHS, N, -1 ) )
            END IF
            IF( M.GE.N ) THEN
*
*              Path 1 - overdetermined or exactly determined.
*
               MAXWRK = MAX( MAXWRK, 3*+ ( MM + N )*ILAENV( 1,
     $                       'SGEBRD'' ', MM, N, -1-1 ) )
               MAXWRK = MAX( MAXWRK, 3*+ NRHS*ILAENV( 1'SORMBR',
     $                       'QLT', MM, NRHS, N, -1 ) )
               MAXWRK = MAX( MAXWRK, 3*+ ( N - 1 )*ILAENV( 1,
     $                       'SORMBR''PLN', N, NRHS, N, -1 ) )
               WLALSD = 9*+ 2*N*SMLSIZ + 8*N*NLVL + N*NRHS +
     $                  ( SMLSIZ + 1 )**2
               MAXWRK = MAX( MAXWRK, 3*+ WLALSD )
               MINWRK = MAX3*+ MM, 3*+ NRHS, 3*+ WLALSD )
            END IF
            IF( N.GT.M ) THEN
               WLALSD = 9*+ 2*M*SMLSIZ + 8*M*NLVL + M*NRHS +
     $                  ( SMLSIZ + 1 )**2
               IF( N.GE.MNTHR ) THEN
*
*                 Path 2a - underdetermined, with many more columns
*                           than rows.
*
                  MAXWRK = M + M*ILAENV( 1'SGELQF'' ', M, N, -1,
     $                                  -1 )
                  MAXWRK = MAX( MAXWRK, M*+ 4*+ 2*M*ILAENV( 1,
     $                          'SGEBRD'' ', M, M, -1-1 ) )
                  MAXWRK = MAX( MAXWRK, M*+ 4*+ NRHS*ILAENV( 1,
     $                          'SORMBR''QLT', M, NRHS, M, -1 ) )
                  MAXWRK = MAX( MAXWRK, M*+ 4*+ ( M - 1 )*ILAENV( 1,
     $                          'SORMBR''PLN', M, NRHS, M, -1 ) )
                  IF( NRHS.GT.1 ) THEN
                     MAXWRK = MAX( MAXWRK, M*+ M + M*NRHS )
                  ELSE
                     MAXWRK = MAX( MAXWRK, M*+ 2*M )
                  END IF
                  MAXWRK = MAX( MAXWRK, M + NRHS*ILAENV( 1'SORMLQ',
     $                          'LT', N, NRHS, M, -1 ) )
                  MAXWRK = MAX( MAXWRK, M*+ 4*+ WLALSD )
!     XXX: Ensure the Path 2a case below is triggered.  The workspace
!     calculation should use queries for all routines eventually.
                  MAXWRK = MAX( MAXWRK,
     $                 4*M+M*M+MAX( M, 2*M-4, NRHS, N-3*M ) )
               ELSE
*
*                 Path 2 - remaining underdetermined cases.
*
                  MAXWRK = 3*+ ( N + M )*ILAENV( 1'SGEBRD'' ', M,
     $                     N, -1-1 )
                  MAXWRK = MAX( MAXWRK, 3*+ NRHS*ILAENV( 1'SORMBR',
     $                          'QLT', M, NRHS, N, -1 ) )
                  MAXWRK = MAX( MAXWRK, 3*+ M*ILAENV( 1'SORMBR',
     $                          'PLN', N, NRHS, M, -1 ) )
                  MAXWRK = MAX( MAXWRK, 3*+ WLALSD )
               END IF
               MINWRK = MAX3*+ NRHS, 3*+ M, 3*+ WLALSD )
            END IF
         END IF
         MINWRK = MIN( MINWRK, MAXWRK )
         WORK( 1 ) = MAXWRK
         IWORK( 1 ) = LIWORK
*
         IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
            INFO = -12
         END IF
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SGELSD'-INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
*
*     Quick return if possible.
*
      IF( M.EQ.0 .OR. N.EQ.0 ) THEN
         RANK = 0
         RETURN
      END IF
*
*     Get machine parameters.
*
      EPS = SLAMCH( 'P' )
      SFMIN = SLAMCH( 'S' )
      SMLNUM = SFMIN / EPS
      BIGNUM = ONE / SMLNUM
      CALL SLABAD( SMLNUM, BIGNUM )
*
*     Scale A if max entry outside range [SMLNUM,BIGNUM].
*
      ANRM = SLANGE( 'M', M, N, A, LDA, WORK )
      IASCL = 0
      IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
*
*        Scale matrix norm up to SMLNUM.
*
         CALL SLASCL( 'G'00, ANRM, SMLNUM, M, N, A, LDA, INFO )
         IASCL = 1
      ELSE IF( ANRM.GT.BIGNUM ) THEN
*
*        Scale matrix norm down to BIGNUM.
*
         CALL SLASCL( 'G'00, ANRM, BIGNUM, M, N, A, LDA, INFO )
         IASCL = 2
      ELSE IF( ANRM.EQ.ZERO ) THEN
*
*        Matrix all zero. Return zero solution.
*
         CALL SLASET( 'F'MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
         CALL SLASET( 'F', MINMN, 1, ZERO, ZERO, S, 1 )
         RANK = 0
         GO TO 10
      END IF
*
*     Scale B if max entry outside range [SMLNUM,BIGNUM].
*
      BNRM = SLANGE( 'M', M, NRHS, B, LDB, WORK )
      IBSCL = 0
      IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
*
*        Scale matrix norm up to SMLNUM.
*
         CALL SLASCL( 'G'00, BNRM, SMLNUM, M, NRHS, B, LDB, INFO )
         IBSCL = 1
      ELSE IF( BNRM.GT.BIGNUM ) THEN
*
*        Scale matrix norm down to BIGNUM.
*
         CALL SLASCL( 'G'00, BNRM, BIGNUM, M, NRHS, B, LDB, INFO )
         IBSCL = 2
      END IF
*
*     If M < N make sure certain entries of B are zero.
*
      IF( M.LT.N )
     $   CALL SLASET( 'F', N-M, NRHS, ZERO, ZERO, B( M+11 ), LDB )
*
*     Overdetermined case.
*
      IF( M.GE.N ) THEN
*
*        Path 1 - overdetermined or exactly determined.
*
         MM = M
         IF( M.GE.MNTHR ) THEN
*
*           Path 1a - overdetermined, with many more rows than columns.
*
            MM = N
            ITAU = 1
            NWORK = ITAU + N
*
*           Compute A=Q*R.
*           (Workspace: need 2*N, prefer N+N*NB)
*
            CALL SGEQRF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
     $                   LWORK-NWORK+1, INFO )
*
*           Multiply B by transpose(Q).
*           (Workspace: need N+NRHS, prefer N+NRHS*NB)
*
            CALL SORMQR( 'L''T', M, NRHS, N, A, LDA, WORK( ITAU ), B,
     $                   LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
*
*           Zero out below R.
*
            IF( N.GT.1 ) THEN
               CALL SLASET( 'L', N-1, N-1, ZERO, ZERO, A( 21 ), LDA )
            END IF
         END IF
*
         IE = 1
         ITAUQ = IE + N
         ITAUP = ITAUQ + N
         NWORK = ITAUP + N
*
*        Bidiagonalize R in A.
*        (Workspace: need 3*N+MM, prefer 3*N+(MM+N)*NB)
*
         CALL SGEBRD( MM, N, A, LDA, S, WORK( IE ), WORK( ITAUQ ),
     $                WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
     $                INFO )
*
*        Multiply B by transpose of left bidiagonalizing vectors of R.
*        (Workspace: need 3*N+NRHS, prefer 3*N+NRHS*NB)
*
         CALL SORMBR( 'Q''L''T', MM, NRHS, N, A, LDA, WORK( ITAUQ ),
     $                B, LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
*
*        Solve the bidiagonal least squares problem.
*
         CALL SLALSD( 'U', SMLSIZ, N, NRHS, S, WORK( IE ), B, LDB,
     $                RCOND, RANK, WORK( NWORK ), IWORK, INFO )
         IF( INFO.NE.0 ) THEN
            GO TO 10
         END IF
*
*        Multiply B by right bidiagonalizing vectors of R.
*
         CALL SORMBR( 'P''L''N', N, NRHS, N, A, LDA, WORK( ITAUP ),
     $                B, LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
*
      ELSE IF( N.GE.MNTHR .AND. LWORK.GE.4*M+M*M+
     $         MAX( M, 2*M-4, NRHS, N-3*M, WLALSD ) ) THEN
*
*        Path 2a - underdetermined, with many more columns than rows
*        and sufficient workspace for an efficient algorithm.
*
         LDWORK = M
         IF( LWORK.GE.MAX4*M+M*LDA+MAX( M, 2*M-4, NRHS, N-3*M ),
     $       M*LDA+M+M*NRHS, 4*M+M*LDA+WLALSD ) )LDWORK = LDA
         ITAU = 1
         NWORK = M + 1
*
*        Compute A=L*Q.
*        (Workspace: need 2*M, prefer M+M*NB)
*
         CALL SGELQF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
     $                LWORK-NWORK+1, INFO )
         IL = NWORK
*
*        Copy L to WORK(IL), zeroing out above its diagonal.
*
         CALL SLACPY( 'L', M, M, A, LDA, WORK( IL ), LDWORK )
         CALL SLASET( 'U', M-1, M-1, ZERO, ZERO, WORK( IL+LDWORK ),
     $                LDWORK )
         IE = IL + LDWORK*M
         ITAUQ = IE + M
         ITAUP = ITAUQ + M
         NWORK = ITAUP + M
*
*        Bidiagonalize L in WORK(IL).
*        (Workspace: need M*M+5*M, prefer M*M+4*M+2*M*NB)
*
         CALL SGEBRD( M, M, WORK( IL ), LDWORK, S, WORK( IE ),
     $                WORK( ITAUQ ), WORK( ITAUP ), WORK( NWORK ),
     $                LWORK-NWORK+1, INFO )
*
*        Multiply B by transpose of left bidiagonalizing vectors of L.
*        (Workspace: need M*M+4*M+NRHS, prefer M*M+4*M+NRHS*NB)
*
         CALL SORMBR( 'Q''L''T', M, NRHS, M, WORK( IL ), LDWORK,
     $                WORK( ITAUQ ), B, LDB, WORK( NWORK ),
     $                LWORK-NWORK+1, INFO )
*
*        Solve the bidiagonal least squares problem.
*
         CALL SLALSD( 'U', SMLSIZ, M, NRHS, S, WORK( IE ), B, LDB,
     $                RCOND, RANK, WORK( NWORK ), IWORK, INFO )
         IF( INFO.NE.0 ) THEN
            GO TO 10
         END IF
*
*        Multiply B by right bidiagonalizing vectors of L.
*
         CALL SORMBR( 'P''L''N', M, NRHS, M, WORK( IL ), LDWORK,
     $                WORK( ITAUP ), B, LDB, WORK( NWORK ),
     $                LWORK-NWORK+1, INFO )
*
*        Zero out below first M rows of B.
*
         CALL SLASET( 'F', N-M, NRHS, ZERO, ZERO, B( M+11 ), LDB )
         NWORK = ITAU + M
*
*        Multiply transpose(Q) by B.
*        (Workspace: need M+NRHS, prefer M+NRHS*NB)
*
         CALL SORMLQ( 'L''T', N, NRHS, M, A, LDA, WORK( ITAU ), B,
     $                LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
*
      ELSE
*
*        Path 2 - remaining underdetermined cases.
*
         IE = 1
         ITAUQ = IE + M
         ITAUP = ITAUQ + M
         NWORK = ITAUP + M
*
*        Bidiagonalize A.
*        (Workspace: need 3*M+N, prefer 3*M+(M+N)*NB)
*
         CALL SGEBRD( M, N, A, LDA, S, WORK( IE ), WORK( ITAUQ ),
     $                WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
     $                INFO )
*
*        Multiply B by transpose of left bidiagonalizing vectors.
*        (Workspace: need 3*M+NRHS, prefer 3*M+NRHS*NB)
*
         CALL SORMBR( 'Q''L''T', M, NRHS, N, A, LDA, WORK( ITAUQ ),
     $                B, LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
*
*        Solve the bidiagonal least squares problem.
*
         CALL SLALSD( 'L', SMLSIZ, M, NRHS, S, WORK( IE ), B, LDB,
     $                RCOND, RANK, WORK( NWORK ), IWORK, INFO )
         IF( INFO.NE.0 ) THEN
            GO TO 10
         END IF
*
*        Multiply B by right bidiagonalizing vectors of A.
*
         CALL SORMBR( 'P''L''N', N, NRHS, M, A, LDA, WORK( ITAUP ),
     $                B, LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
*
      END IF
*
*     Undo scaling.
*
      IF( IASCL.EQ.1 ) THEN
         CALL SLASCL( 'G'00, ANRM, SMLNUM, N, NRHS, B, LDB, INFO )
         CALL SLASCL( 'G'00, SMLNUM, ANRM, MINMN, 1, S, MINMN,
     $                INFO )
      ELSE IF( IASCL.EQ.2 ) THEN
         CALL SLASCL( 'G'00, ANRM, BIGNUM, N, NRHS, B, LDB, INFO )
         CALL SLASCL( 'G'00, BIGNUM, ANRM, MINMN, 1, S, MINMN,
     $                INFO )
      END IF
      IF( IBSCL.EQ.1 ) THEN
         CALL SLASCL( 'G'00, SMLNUM, BNRM, N, NRHS, B, LDB, INFO )
      ELSE IF( IBSCL.EQ.2 ) THEN
         CALL SLASCL( 'G'00, BIGNUM, BNRM, N, NRHS, B, LDB, INFO )
      END IF
*
   10 CONTINUE
      WORK( 1 ) = MAXWRK
      IWORK( 1 ) = LIWORK
      RETURN
*
*     End of SGELSD
*
      END