1
        2
        3
        4
        5
        6
        7
        8
        9
       10
       11
       12
       13
       14
       15
       16
       17
       18
       19
       20
       21
       22
       23
       24
       25
       26
       27
       28
       29
       30
       31
       32
       33
       34
       35
       36
       37
       38
       39
       40
       41
       42
       43
       44
       45
       46
       47
       48
       49
       50
       51
       52
       53
       54
       55
       56
       57
       58
       59
       60
       61
       62
       63
       64
       65
       66
       67
       68
       69
       70
       71
       72
       73
       74
       75
       76
       77
       78
       79
       80
       81
       82
       83
       84
       85
       86
       87
       88
       89
       90
       91
       92
       93
       94
       95
       96
       97
       98
       99
      100
      101
      102
      103
      104
      105
      106
      107
      108
      109
      110
      111
      112
      113
      114
      115
      116
      117
      118
      119
      120
      121
      122
      123
      124
      125
      126
      127
      128
      129
      130
      131
      132
      133
      134
      135
      136
      137
      138
      139
      140
      141
      142
      143
      144
      145
      146
      147
      148
      149
      150
      151
      152
      153
      154
      155
      156
      157
      158
      159
      160
      161
      162
      163
      164
      165
      166
      167
      168
      169
      170
      171
      172
      173
      174
      175
      176
      177
      178
      179
      180
      181
      182
      183
      184
      185
      186
      187
      188
      189
      190
      191
      192
      193
      194
      195
      196
      197
      198
      199
      200
      201
      202
      203
      204
      205
      206
      207
      208
      209
      210
      211
      212
      213
      214
      215
      216
      217
      218
      219
      220
      221
      222
      223
      224
      225
      226
      227
      228
      229
      230
      231
      232
      233
      234
      235
      236
      237
      238
      239
      240
      241
      242
      243
      244
      245
      246
      247
      248
      249
      250
      251
      252
      253
      254
      255
      256
      257
      258
      259
      260
      261
      262
      263
      264
      265
      266
      267
      268
      269
      270
      271
      272
      273
      274
      275
      276
      277
      278
      279
      280
      281
      282
      283
      284
      285
      286
      287
      288
      289
      290
      291
      292
      293
      294
      295
      296
      297
      298
      299
      300
      301
      302
      303
      304
      305
      306
      307
      308
      309
      310
      311
      312
      313
      314
      315
      316
      317
      318
      319
      320
      321
      322
      323
      324
      325
      326
      327
      328
      329
      330
      331
      332
      333
      334
      335
      336
      337
      338
      339
      340
      341
      342
      343
      344
      345
      346
      347
      348
      349
      350
      351
      352
      353
      354
      355
      356
      357
      358
      359
      360
      361
      362
      363
      364
      365
      366
      367
      368
      369
      370
      371
      372
      373
      374
      375
      376
      377
      378
      379
      380
      381
      382
      383
      384
      385
      386
      387
      388
      389
      390
      391
      392
      393
      394
      395
      396
      397
      398
      399
      400
      401
      402
      403
      404
      405
      406
      407
      408
      409
      410
      411
      412
      413
      414
      415
      416
      417
      418
      419
      420
      421
      422
      423
      424
      425
      426
      427
      428
      429
      430
      431
      432
      433
      434
      435
      436
      437
      438
      439
      440
      441
      442
      443
      444
      445
      446
      447
      448
      449
      450
      451
      452
      453
      454
      455
      456
      457
      458
      459
      460
      461
      462
      463
      464
      465
      466
      467
      468
      469
      470
      471
      472
      473
      474
      475
      476
      477
      478
      479
      480
      481
      482
      483
      484
      485
      486
      487
      488
      489
      490
      491
      492
      493
      494
      495
      496
      497
      498
      499
      500
      501
      502
      503
      504
      505
      506
      507
      508
      509
      510
      511
      512
      513
      514
      515
      516
      517
      518
      519
      520
      521
      522
      523
      524
      525
      526
      527
      528
      529
      530
      531
      532
      533
      534
      535
      536
      537
      538
      539
      540
      541
      542
      543
      544
      545
      546
      547
      548
      549
      550
      551
      552
      553
      554
      555
      556
      557
      558
      559
      560
      561
      562
      563
      564
      565
      566
      567
      568
      569
      570
      571
      572
      573
      574
      575
      576
      577
      578
      579
      580
      581
      582
      583
      584
      585
      586
      587
      588
      589
      590
      591
      592
      593
      594
      595
      596
      597
      598
      599
      600
      601
      602
      603
      604
      605
      606
      607
      608
      609
      610
      611
      612
      613
      614
      615
      616
      617
      618
      619
      620
      621
      622
      623
      624
      625
      626
      627
      628
      629
      630
      631
      632
      633
      634
      635
      636
      637
      638
      639
      640
      641
      642
      643
      644
      645
      646
      647
      648
      649
      650
      651
      652
      653
      654
      655
      656
      657
      658
      659
      660
      661
      662
      663
      664
      665
      666
      667
      668
      669
      670
      671
      672
      673
      674
      675
      676
      677
      678
      679
      680
      681
      682
      683
      684
      685
      686
      687
      688
      689
      690
      691
      692
      693
      694
      695
      696
      697
      698
      699
      700
      701
      702
      703
      704
      705
      706
      707
      708
      709
      710
      711
      712
      713
      714
      715
      716
      717
      718
      719
      720
      721
      722
      723
      724
      725
      726
      727
      728
      729
      730
      731
      732
      733
      734
      735
      736
      737
      738
      739
      740
      741
      742
      743
      744
      745
      746
      747
      748
      749
      750
      751
      752
      753
      754
      755
      756
      757
      758
      759
      760
      761
      762
      763
      764
      765
      766
      767
      768
      769
      770
      771
      772
      773
      774
      775
      776
      777
      778
      779
      780
      781
      782
      783
      784
      785
      786
      787
      788
      789
      790
      791
      792
      793
      794
      795
      796
      797
      798
      799
      800
      801
      802
      803
      804
      805
      806
      807
      808
      809
      810
      811
      812
      813
      814
      815
      816
      817
      818
      819
      820
      821
      822
      823
      824
      825
      826
      827
      828
      829
      830
      831
      832
      833
      834
      835
      836
      837
      838
      839
      840
      841
      842
      843
      844
      845
      846
      847
      848
      849
      850
      851
      852
      853
      854
      855
      856
      857
      858
      859
      860
      861
      862
      863
      864
      865
      866
      867
      868
      869
      870
      871
      872
      873
      874
      875
      876
      877
      878
      879
      880
      881
      882
      883
      884
      885
      886
      887
      888
      889
      890
      891
      892
      893
      894
      895
      896
      897
      898
      899
      900
      901
      902
      903
      904
      905
      906
      907
      908
      909
      910
      911
      912
      913
      914
      915
      916
      917
      918
      919
      920
      921
      922
      923
      924
      925
      926
      927
      928
      929
      930
      931
      932
      933
      934
      935
      936
      937
      938
      939
      940
      941
      942
      943
      944
      945
      946
      947
      948
      949
      950
      951
      952
      953
      954
      955
      956
      957
      958
      959
      960
      961
      962
      963
      964
      965
      966
      967
      968
      969
      970
      971
      972
      973
      974
      975
      976
      977
      978
      979
      980
      981
      982
      983
      984
      985
      986
      987
      988
      989
      990
      991
      992
      993
      994
      995
      996
      997
      998
      999
     1000
     1001
     1002
     1003
     1004
     1005
     1006
     1007
     1008
     1009
     1010
     1011
     1012
     1013
     1014
     1015
     1016
     1017
     1018
     1019
     1020
     1021
     1022
     1023
     1024
     1025
     1026
     1027
     1028
     1029
     1030
     1031
     1032
     1033
     1034
     1035
     1036
     1037
     1038
     1039
     1040
     1041
     1042
     1043
     1044
     1045
     1046
     1047
     1048
     1049
     1050
     1051
     1052
     1053
     1054
     1055
     1056
     1057
     1058
     1059
     1060
     1061
     1062
     1063
     1064
     1065
     1066
     1067
     1068
     1069
     1070
     1071
     1072
     1073
     1074
     1075
     1076
     1077
     1078
     1079
     1080
     1081
     1082
     1083
     1084
     1085
     1086
     1087
     1088
     1089
     1090
     1091
     1092
     1093
     1094
     1095
     1096
     1097
     1098
     1099
     1100
     1101
     1102
     1103
     1104
     1105
     1106
     1107
     1108
     1109
     1110
     1111
     1112
     1113
     1114
     1115
     1116
     1117
     1118
     1119
     1120
     1121
     1122
     1123
     1124
     1125
     1126
     1127
     1128
     1129
     1130
     1131
     1132
     1133
     1134
     1135
     1136
     1137
     1138
     1139
     1140
     1141
     1142
     1143
     1144
     1145
     1146
     1147
     1148
     1149
     1150
     1151
     1152
     1153
     1154
     1155
     1156
     1157
     1158
     1159
     1160
     1161
     1162
     1163
     1164
     1165
     1166
     1167
     1168
     1169
     1170
     1171
     1172
     1173
     1174
     1175
     1176
     1177
     1178
     1179
     1180
     1181
     1182
     1183
     1184
     1185
     1186
     1187
     1188
     1189
     1190
     1191
     1192
     1193
     1194
     1195
     1196
     1197
     1198
     1199
     1200
     1201
     1202
     1203
     1204
     1205
     1206
     1207
     1208
     1209
     1210
     1211
     1212
     1213
     1214
     1215
     1216
     1217
     1218
     1219
     1220
     1221
     1222
     1223
     1224
     1225
     1226
     1227
     1228
     1229
     1230
     1231
     1232
     1233
     1234
     1235
     1236
     1237
     1238
     1239
     1240
     1241
     1242
     1243
     1244
     1245
     1246
     1247
     1248
     1249
     1250
     1251
     1252
     1253
     1254
     1255
     1256
     1257
     1258
     1259
     1260
     1261
     1262
     1263
     1264
     1265
     1266
     1267
     1268
     1269
     1270
     1271
     1272
     1273
     1274
     1275
     1276
     1277
     1278
     1279
     1280
     1281
     1282
     1283
     1284
     1285
     1286
     1287
     1288
     1289
     1290
     1291
     1292
     1293
     1294
     1295
     1296
     1297
     1298
     1299
     1300
     1301
     1302
     1303
     1304
     1305
     1306
     1307
     1308
     1309
     1310
     1311
     1312
     1313
     1314
     1315
     1316
     1317
     1318
     1319
     1320
     1321
     1322
     1323
     1324
     1325
     1326
     1327
     1328
     1329
     1330
     1331
     1332
     1333
     1334
     1335
     1336
     1337
     1338
     1339
     1340
     1341
     1342
     1343
     1344
     1345
     1346
     1347
     1348
     1349
     1350
     1351
     1352
     1353
     1354
     1355
     1356
     1357
     1358
     1359
     1360
     1361
     1362
     1363
     1364
     1365
     1366
     1367
     1368
     1369
     1370
     1371
     1372
     1373
     1374
     1375
     1376
     1377
     1378
     1379
     1380
     1381
     1382
     1383
     1384
     1385
     1386
     1387
     1388
     1389
     1390
     1391
     1392
     1393
     1394
     1395
     1396
     1397
     1398
     1399
     1400
     1401
     1402
     1403
     1404
     1405
     1406
     1407
     1408
     1409
     1410
     1411
     1412
     1413
     1414
     1415
     1416
     1417
     1418
     1419
     1420
     1421
     1422
     1423
     1424
     1425
     1426
     1427
     1428
     1429
     1430
     1431
     1432
     1433
     1434
     1435
     1436
     1437
     1438
     1439
     1440
     1441
     1442
     1443
     1444
     1445
     1446
     1447
     1448
     1449
     1450
     1451
     1452
     1453
     1454
     1455
     1456
     1457
     1458
     1459
     1460
     1461
     1462
     1463
     1464
     1465
     1466
     1467
     1468
     1469
     1470
     1471
     1472
     1473
     1474
     1475
     1476
     1477
     1478
     1479
     1480
     1481
     1482
     1483
     1484
     1485
     1486
     1487
     1488
     1489
     1490
     1491
     1492
     1493
     1494
     1495
     1496
     1497
     1498
     1499
     1500
     1501
     1502
     1503
     1504
     1505
     1506
     1507
     1508
     1509
     1510
     1511
     1512
     1513
     1514
     1515
     1516
      SUBROUTINE SGESVJ( JOBA, JOBU, JOBV, M, N, A, LDA, SVA, MV, V,
     $                   LDV, WORK, LWORK, INFO )
*
*  -- LAPACK routine (version 3.3.1)                                  --
*
*  -- Contributed by Zlatko Drmac of the University of Zagreb and     --
*  -- Kresimir Veselic of the Fernuniversitaet Hagen                  --
*  -- April 2011                                                      --
*
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* This routine is also part of SIGMA (version 1.23, October 23. 2008.)
* SIGMA is a library of algorithms for highly accurate algorithms for
* computation of SVD, PSVD, QSVD, (H,K)-SVD, and for solution of the
* eigenvalue problems Hx = lambda M x, H M x = lambda x with H, M > 0.
*
      IMPLICIT           NONE
*     ..
*     .. Scalar Arguments ..
      INTEGER            INFO, LDA, LDV, LWORK, M, MV, N
      CHARACTER*1        JOBA, JOBU, JOBV
*     ..
*     .. Array Arguments ..
      REAL               A( LDA, * ), SVA( N ), V( LDV, * ),
     $                   WORK( LWORK )
*     ..
*
*  Purpose
*  =======
*
*  SGESVJ computes the singular value decomposition (SVD) of a real
*  M-by-N matrix A, where M >= N. The SVD of A is written as
*                                     [++]   [xx]   [x0]   [xx]
*               A = U * SIGMA * V^t,  [++] = [xx] * [ox] * [xx]
*                                     [++]   [xx]
*  where SIGMA is an N-by-N diagonal matrix, U is an M-by-N orthonormal
*  matrix, and V is an N-by-N orthogonal matrix. The diagonal elements
*  of SIGMA are the singular values of A. The columns of U and V are the
*  left and the right singular vectors of A, respectively.
*
*  Further Details
*  ~~~~~~~~~~~~~~~
*  The orthogonal N-by-N matrix V is obtained as a product of Jacobi plane
*  rotations. The rotations are implemented as fast scaled rotations of
*  Anda and Park [1]. In the case of underflow of the Jacobi angle, a
*  modified Jacobi transformation of Drmac [4] is used. Pivot strategy uses
*  column interchanges of de Rijk [2]. The relative accuracy of the computed
*  singular values and the accuracy of the computed singular vectors (in
*  angle metric) is as guaranteed by the theory of Demmel and Veselic [3].
*  The condition number that determines the accuracy in the full rank case
*  is essentially min_{D=diag} kappa(A*D), where kappa(.) is the
*  spectral condition number. The best performance of this Jacobi SVD
*  procedure is achieved if used in an  accelerated version of Drmac and
*  Veselic [5,6], and it is the kernel routine in the SIGMA library [7].
*  Some tunning parameters (marked with [TP]) are available for the
*  implementer.
*  The computational range for the nonzero singular values is the  machine
*  number interval ( UNDERFLOW , OVERFLOW ). In extreme cases, even
*  denormalized singular values can be computed with the corresponding
*  gradual loss of accurate digits.
*
*  Contributors
*  ~~~~~~~~~~~~
*  Zlatko Drmac (Zagreb, Croatia) and Kresimir Veselic (Hagen, Germany)
*
*  References
*  ~~~~~~~~~~
* [1] A. A. Anda and H. Park: Fast plane rotations with dynamic scaling.
*     SIAM J. matrix Anal. Appl., Vol. 15 (1994), pp. 162-174.
* [2] P. P. M. De Rijk: A one-sided Jacobi algorithm for computing the
*     singular value decomposition on a vector computer.
*     SIAM J. Sci. Stat. Comp., Vol. 10 (1998), pp. 359-371.
* [3] J. Demmel and K. Veselic: Jacobi method is more accurate than QR.
* [4] Z. Drmac: Implementation of Jacobi rotations for accurate singular
*     value computation in floating point arithmetic.
*     SIAM J. Sci. Comp., Vol. 18 (1997), pp. 1200-1222.
* [5] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm I.
*     SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1322-1342.
*     LAPACK Working note 169.
* [6] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm II.
*     SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1343-1362.
*     LAPACK Working note 170.
* [7] Z. Drmac: SIGMA - mathematical software library for accurate SVD, PSV,
*     QSVD, (H,K)-SVD computations.
*     Department of Mathematics, University of Zagreb, 2008.
*
*  Bugs, Examples and Comments
*  ~~~~~~~~~~~~~~~~~~~~~~~~~~~
*  Please report all bugs and send interesting test examples and comments to
*  drmac@math.hr. Thank you.
*
*  Arguments
*  =========
*
*  JOBA    (input) CHARACTER* 1
*          Specifies the structure of A.
*          = 'L': The input matrix A is lower triangular;
*          = 'U': The input matrix A is upper triangular;
*          = 'G': The input matrix A is general M-by-N matrix, M >= N.
*
*  JOBU    (input) CHARACTER*1
*          Specifies whether to compute the left singular vectors
*          (columns of U):
*          = 'U': The left singular vectors corresponding to the nonzero
*                 singular values are computed and returned in the leading
*                 columns of A. See more details in the description of A.
*                 The default numerical orthogonality threshold is set to
*                 approximately TOL=CTOL*EPS, CTOL=SQRT(M), EPS=SLAMCH('E').
*          = 'C': Analogous to JOBU='U', except that user can control the
*                 level of numerical orthogonality of the computed left
*                 singular vectors. TOL can be set to TOL = CTOL*EPS, where
*                 CTOL is given on input in the array WORK.
*                 No CTOL smaller than ONE is allowed. CTOL greater
*                 than 1 / EPS is meaningless. The option 'C'
*                 can be used if M*EPS is satisfactory orthogonality
*                 of the computed left singular vectors, so CTOL=M could
*                 save few sweeps of Jacobi rotations.
*                 See the descriptions of A and WORK(1).
*          = 'N': The matrix U is not computed. However, see the
*                 description of A.
*
*  JOBV    (input) CHARACTER*1
*          Specifies whether to compute the right singular vectors, that
*          is, the matrix V:
*          = 'V' : the matrix V is computed and returned in the array V
*          = 'A' : the Jacobi rotations are applied to the MV-by-N
*                  array V. In other words, the right singular vector
*                  matrix V is not computed explicitly; instead it is
*                  applied to an MV-by-N matrix initially stored in the
*                  first MV rows of V.
*          = 'N' : the matrix V is not computed and the array V is not
*                  referenced
*
*  M       (input) INTEGER
*          The number of rows of the input matrix A. 1/SLAMCH('E') > M >= 0.
*
*  N       (input) INTEGER
*          The number of columns of the input matrix A.
*          M >= N >= 0.
*
*  A       (input/output) REAL array, dimension (LDA,N)
*          On entry, the M-by-N matrix A.
*          On exit,
*          If JOBU .EQ. 'U' .OR. JOBU .EQ. 'C':
*                 If INFO .EQ. 0 :
*                 RANKA orthonormal columns of U are returned in the
*                 leading RANKA columns of the array A. Here RANKA <= N
*                 is the number of computed singular values of A that are
*                 above the underflow threshold SLAMCH('S'). The singular
*                 vectors corresponding to underflowed or zero singular
*                 values are not computed. The value of RANKA is returned
*                 in the array WORK as RANKA=NINT(WORK(2)). Also see the
*                 descriptions of SVA and WORK. The computed columns of U
*                 are mutually numerically orthogonal up to approximately
*                 TOL=SQRT(M)*EPS (default); or TOL=CTOL*EPS (JOBU.EQ.'C'),
*                 see the description of JOBU.
*                 If INFO .GT. 0,
*                 the procedure SGESVJ did not converge in the given number
*                 of iterations (sweeps). In that case, the computed
*                 columns of U may not be orthogonal up to TOL. The output
*                 U (stored in A), SIGMA (given by the computed singular
*                 values in SVA(1:N)) and V is still a decomposition of the
*                 input matrix A in the sense that the residual
*                 ||A-SCALE*U*SIGMA*V^T||_2 / ||A||_2 is small.
*          If JOBU .EQ. 'N':
*                 If INFO .EQ. 0 :
*                 Note that the left singular vectors are 'for free' in the
*                 one-sided Jacobi SVD algorithm. However, if only the
*                 singular values are needed, the level of numerical
*                 orthogonality of U is not an issue and iterations are
*                 stopped when the columns of the iterated matrix are
*                 numerically orthogonal up to approximately M*EPS. Thus,
*                 on exit, A contains the columns of U scaled with the
*                 corresponding singular values.
*                 If INFO .GT. 0 :
*                 the procedure SGESVJ did not converge in the given number
*                 of iterations (sweeps).
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,M).
*
*  SVA     (workspace/output) REAL array, dimension (N)
*          On exit,
*          If INFO .EQ. 0 :
*          depending on the value SCALE = WORK(1), we have:
*                 If SCALE .EQ. ONE:
*                 SVA(1:N) contains the computed singular values of A.
*                 During the computation SVA contains the Euclidean column
*                 norms of the iterated matrices in the array A.
*                 If SCALE .NE. ONE:
*                 The singular values of A are SCALE*SVA(1:N), and this
*                 factored representation is due to the fact that some of the
*                 singular values of A might underflow or overflow.
*
*          If INFO .GT. 0 :
*          the procedure SGESVJ did not converge in the given number of
*          iterations (sweeps) and SCALE*SVA(1:N) may not be accurate.
*
*  MV      (input) INTEGER
*          If JOBV .EQ. 'A', then the product of Jacobi rotations in SGESVJ
*          is applied to the first MV rows of V. See the description of JOBV.
*
*  V       (input/output) REAL array, dimension (LDV,N)
*          If JOBV = 'V', then V contains on exit the N-by-N matrix of
*                         the right singular vectors;
*          If JOBV = 'A', then V contains the product of the computed right
*                         singular vector matrix and the initial matrix in
*                         the array V.
*          If JOBV = 'N', then V is not referenced.
*
*  LDV     (input) INTEGER
*          The leading dimension of the array V, LDV .GE. 1.
*          If JOBV .EQ. 'V', then LDV .GE. max(1,N).
*          If JOBV .EQ. 'A', then LDV .GE. max(1,MV) .
*
*  WORK    (input/workspace/output) REAL array, dimension max(4,M+N).
*          On entry,
*          If JOBU .EQ. 'C' :
*          WORK(1) = CTOL, where CTOL defines the threshold for convergence.
*                    The process stops if all columns of A are mutually
*                    orthogonal up to CTOL*EPS, EPS=SLAMCH('E').
*                    It is required that CTOL >= ONE, i.e. it is not
*                    allowed to force the routine to obtain orthogonality
*                    below EPSILON.
*          On exit,
*          WORK(1) = SCALE is the scaling factor such that SCALE*SVA(1:N)
*                    are the computed singular vcalues of A.
*                    (See description of SVA().)
*          WORK(2) = NINT(WORK(2)) is the number of the computed nonzero
*                    singular values.
*          WORK(3) = NINT(WORK(3)) is the number of the computed singular
*                    values that are larger than the underflow threshold.
*          WORK(4) = NINT(WORK(4)) is the number of sweeps of Jacobi
*                    rotations needed for numerical convergence.
*          WORK(5) = max_{i.NE.j} |COS(A(:,i),A(:,j))| in the last sweep.
*                    This is useful information in cases when SGESVJ did
*                    not converge, as it can be used to estimate whether
*                    the output is stil useful and for post festum analysis.
*          WORK(6) = the largest absolute value over all sines of the
*                    Jacobi rotation angles in the last sweep. It can be
*                    useful for a post festum analysis.
*
*  LWORK  (input) INTEGER 
*         length of WORK, WORK >= MAX(6,M+N)
*
*  INFO    (output) INTEGER
*          = 0 : successful exit.
*          < 0 : if INFO = -i, then the i-th argument had an illegal value
*          > 0 : SGESVJ did not converge in the maximal allowed number (30)
*                of sweeps. The output may still be useful. See the
*                description of WORK.
*
*  =====================================================================
*
*     .. Local Parameters ..
      REAL               ZERO, HALF, ONE, TWO
      PARAMETER          ( ZERO = 0.0E0, HALF = 0.5E0, ONE = 1.0E0,
     $                   TWO = 2.0E0 )
      INTEGER            NSWEEP
      PARAMETER          ( NSWEEP = 30 )
*     ..
*     .. Local Scalars ..
      REAL               AAPP, AAPP0, AAPQ, AAQQ, APOAQ, AQOAP, BIG,
     $                   BIGTHETA, CS, CTOL, EPSLN, LARGE, MXAAPQ,
     $                   MXSINJ, ROOTBIG, ROOTEPS, ROOTSFMIN, ROOTTOL,
     $                   SKL, SFMIN, SMALL, SN, T, TEMP1, THETA,
     $                   THSIGN, TOL
      INTEGER            BLSKIP, EMPTSW, i, ibr, IERR, igl, IJBLSK, ir1,
     $                   ISWROT, jbc, jgl, KBL, LKAHEAD, MVL, N2, N34,
     $                   N4, NBL, NOTROT, p, PSKIPPED, q, ROWSKIP,
     $                   SWBAND
      LOGICAL            APPLV, GOSCALE, LOWER, LSVEC, NOSCALE, ROTOK,
     $                   RSVEC, UCTOL, UPPER
*     ..
*     .. Local Arrays ..
      REAL               FASTR( 5 )
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABSAMAX1AMIN1FLOATMIN0SIGNSQRT
*     ..
*     .. External Functions ..
*     ..
*     from BLAS
      REAL               SDOT, SNRM2
      EXTERNAL           SDOT, SNRM2
      INTEGER            ISAMAX
      EXTERNAL           ISAMAX
*     from LAPACK
      REAL               SLAMCH
      EXTERNAL           SLAMCH
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
*     ..
*     from BLAS
      EXTERNAL           SAXPY, SCOPY, SROTM, SSCAL, SSWAP
*     from LAPACK
      EXTERNAL           SLASCL, SLASET, SLASSQ, XERBLA
*
      EXTERNAL           SGSVJ0, SGSVJ1
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments
*
      LSVEC = LSAME( JOBU, 'U' )
      UCTOL = LSAME( JOBU, 'C' )
      RSVEC = LSAME( JOBV, 'V' )
      APPLV = LSAME( JOBV, 'A' )
      UPPER = LSAME( JOBA, 'U' )
      LOWER = LSAME( JOBA, 'L' )
*
      IF.NOT.( UPPER .OR. LOWER .OR. LSAME( JOBA, 'G' ) ) ) THEN
         INFO = -1
      ELSE IF.NOT.( LSVEC .OR. UCTOL .OR. LSAME( JOBU, 'N' ) ) ) THEN
         INFO = -2
      ELSE IF.NOT.( RSVEC .OR. APPLV .OR. LSAME( JOBV, 'N' ) ) ) THEN
         INFO = -3
      ELSE IF( M.LT.0 ) THEN
         INFO = -4
      ELSE IF( ( N.LT.0 ) .OR. ( N.GT.M ) ) THEN
         INFO = -5
      ELSE IF( LDA.LT.M ) THEN
         INFO = -7
      ELSE IF( MV.LT.0 ) THEN
         INFO = -9
      ELSE IF( ( RSVEC .AND. ( LDV.LT.N ) ) .OR.
     $         ( APPLV .AND. ( LDV.LT.MV ) ) ) THEN
         INFO = -11
      ELSE IF( UCTOL .AND. ( WORK( 1 ).LE.ONE ) ) THEN
         INFO = -12
      ELSE IF( LWORK.LT.MAX0( M+N, 6 ) ) THEN
         INFO = -13
      ELSE
         INFO = 0
      END IF
*
*     #:(
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SGESVJ'-INFO )
         RETURN
      END IF
*
* #:) Quick return for void matrix
*
      IF( ( M.EQ.0 ) .OR. ( N.EQ.0 ) )RETURN
*
*     Set numerical parameters
*     The stopping criterion for Jacobi rotations is
*
*     max_{i<>j}|A(:,i)^T * A(:,j)|/(||A(:,i)||*||A(:,j)||) < CTOL*EPS
*
*     where EPS is the round-off and CTOL is defined as follows:
*
      IF( UCTOL ) THEN
*        ... user controlled
         CTOL = WORK( 1 )
      ELSE
*        ... default
         IF( LSVEC .OR. RSVEC .OR. APPLV ) THEN
            CTOL = SQRTFLOAT( M ) )
         ELSE
            CTOL = FLOAT( M )
         END IF
      END IF
*     ... and the machine dependent parameters are
*[!]  (Make sure that SLAMCH() works properly on the target machine.)
*
      EPSLN = SLAMCH( 'Epsilon' )
      ROOTEPS = SQRT( EPSLN )
      SFMIN = SLAMCH( 'SafeMinimum' )
      ROOTSFMIN = SQRT( SFMIN )
      SMALL = SFMIN / EPSLN
      BIG = SLAMCH( 'Overflow' )
*     BIG         = ONE    / SFMIN
      ROOTBIG = ONE / ROOTSFMIN
      LARGE = BIG / SQRTFLOAT( M*N ) )
      BIGTHETA = ONE / ROOTEPS
*
      TOL = CTOL*EPSLN
      ROOTTOL = SQRT( TOL )
*
      IFFLOAT( M )*EPSLN.GE.ONE ) THEN
         INFO = -4
         CALL XERBLA( 'SGESVJ'-INFO )
         RETURN
      END IF
*
*     Initialize the right singular vector matrix.
*
      IF( RSVEC ) THEN
         MVL = N
         CALL SLASET( 'A', MVL, N, ZERO, ONE, V, LDV )
      ELSE IF( APPLV ) THEN
         MVL = MV
      END IF
      RSVEC = RSVEC .OR. APPLV
*
*     Initialize SVA( 1:N ) = ( ||A e_i||_2, i = 1:N )
*(!)  If necessary, scale A to protect the largest singular value
*     from overflow. It is possible that saving the largest singular
*     value destroys the information about the small ones.
*     This initial scaling is almost minimal in the sense that the
*     goal is to make sure that no column norm overflows, and that
*     SQRT(N)*max_i SVA(i) does not overflow. If INFinite entries
*     in A are detected, the procedure returns with INFO=-6.
*
      SKL = ONE / SQRTFLOAT( M )*FLOAT( N ) )
      NOSCALE = .TRUE.
      GOSCALE = .TRUE.
*
      IF( LOWER ) THEN
*        the input matrix is M-by-N lower triangular (trapezoidal)
         DO 1874 p = 1, N
            AAPP = ZERO
            AAQQ = ONE
            CALL SLASSQ( M-p+1, A( p, p ), 1, AAPP, AAQQ )
            IF( AAPP.GT.BIG ) THEN
               INFO = -6
               CALL XERBLA( 'SGESVJ'-INFO )
               RETURN
            END IF
            AAQQ = SQRT( AAQQ )
            IF( ( AAPP.LT.( BIG / AAQQ ) ) .AND. NOSCALE ) THEN
               SVA( p ) = AAPP*AAQQ
            ELSE
               NOSCALE = .FALSE.
               SVA( p ) = AAPP*( AAQQ*SKL )
               IF( GOSCALE ) THEN
                  GOSCALE = .FALSE.
                  DO 1873 q = 1, p - 1
                     SVA( q ) = SVA( q )*SKL
 1873             CONTINUE
               END IF
            END IF
 1874    CONTINUE
      ELSE IF( UPPER ) THEN
*        the input matrix is M-by-N upper triangular (trapezoidal)
         DO 2874 p = 1, N
            AAPP = ZERO
            AAQQ = ONE
            CALL SLASSQ( p, A( 1, p ), 1, AAPP, AAQQ )
            IF( AAPP.GT.BIG ) THEN
               INFO = -6
               CALL XERBLA( 'SGESVJ'-INFO )
               RETURN
            END IF
            AAQQ = SQRT( AAQQ )
            IF( ( AAPP.LT.( BIG / AAQQ ) ) .AND. NOSCALE ) THEN
               SVA( p ) = AAPP*AAQQ
            ELSE
               NOSCALE = .FALSE.
               SVA( p ) = AAPP*( AAQQ*SKL )
               IF( GOSCALE ) THEN
                  GOSCALE = .FALSE.
                  DO 2873 q = 1, p - 1
                     SVA( q ) = SVA( q )*SKL
 2873             CONTINUE
               END IF
            END IF
 2874    CONTINUE
      ELSE
*        the input matrix is M-by-N general dense
         DO 3874 p = 1, N
            AAPP = ZERO
            AAQQ = ONE
            CALL SLASSQ( M, A( 1, p ), 1, AAPP, AAQQ )
            IF( AAPP.GT.BIG ) THEN
               INFO = -6
               CALL XERBLA( 'SGESVJ'-INFO )
               RETURN
            END IF
            AAQQ = SQRT( AAQQ )
            IF( ( AAPP.LT.( BIG / AAQQ ) ) .AND. NOSCALE ) THEN
               SVA( p ) = AAPP*AAQQ
            ELSE
               NOSCALE = .FALSE.
               SVA( p ) = AAPP*( AAQQ*SKL )
               IF( GOSCALE ) THEN
                  GOSCALE = .FALSE.
                  DO 3873 q = 1, p - 1
                     SVA( q ) = SVA( q )*SKL
 3873             CONTINUE
               END IF
            END IF
 3874    CONTINUE
      END IF
*
      IF( NOSCALE )SKL = ONE
*
*     Move the smaller part of the spectrum from the underflow threshold
*(!)  Start by determining the position of the nonzero entries of the
*     array SVA() relative to ( SFMIN, BIG ).
*
      AAPP = ZERO
      AAQQ = BIG
      DO 4781 p = 1, N
         IF( SVA( p ).NE.ZERO )AAQQ = AMIN1( AAQQ, SVA( p ) )
         AAPP = AMAX1( AAPP, SVA( p ) )
 4781 CONTINUE
*
* #:) Quick return for zero matrix
*
      IF( AAPP.EQ.ZERO ) THEN
         IF( LSVEC )CALL SLASET( 'G', M, N, ZERO, ONE, A, LDA )
         WORK( 1 ) = ONE
         WORK( 2 ) = ZERO
         WORK( 3 ) = ZERO
         WORK( 4 ) = ZERO
         WORK( 5 ) = ZERO
         WORK( 6 ) = ZERO
         RETURN
      END IF
*
* #:) Quick return for one-column matrix
*
      IF( N.EQ.1 ) THEN
         IF( LSVEC )CALL SLASCL( 'G'00, SVA( 1 ), SKL, M, 1,
     $                           A( 11 ), LDA, IERR )
         WORK( 1 ) = ONE / SKL
         IF( SVA( 1 ).GE.SFMIN ) THEN
            WORK( 2 ) = ONE
         ELSE
            WORK( 2 ) = ZERO
         END IF
         WORK( 3 ) = ZERO
         WORK( 4 ) = ZERO
         WORK( 5 ) = ZERO
         WORK( 6 ) = ZERO
         RETURN
      END IF
*
*     Protect small singular values from underflow, and try to
*     avoid underflows/overflows in computing Jacobi rotations.
*
      SN = SQRT( SFMIN / EPSLN )
      TEMP1 = SQRT( BIG / FLOAT( N ) )
      IF( ( AAPP.LE.SN ) .OR. ( AAQQ.GE.TEMP1 ) .OR.
     $    ( ( SN.LE.AAQQ ) .AND. ( AAPP.LE.TEMP1 ) ) ) THEN
         TEMP1 = AMIN1( BIG, TEMP1 / AAPP )
*         AAQQ  = AAQQ*TEMP1
*         AAPP  = AAPP*TEMP1
      ELSE IF( ( AAQQ.LE.SN ) .AND. ( AAPP.LE.TEMP1 ) ) THEN
         TEMP1 = AMIN1( SN / AAQQ, BIG / ( AAPP*SQRTFLOAT( N ) ) ) )
*         AAQQ  = AAQQ*TEMP1
*         AAPP  = AAPP*TEMP1
      ELSE IF( ( AAQQ.GE.SN ) .AND. ( AAPP.GE.TEMP1 ) ) THEN
         TEMP1 = AMAX1( SN / AAQQ, TEMP1 / AAPP )
*         AAQQ  = AAQQ*TEMP1
*         AAPP  = AAPP*TEMP1
      ELSE IF( ( AAQQ.LE.SN ) .AND. ( AAPP.GE.TEMP1 ) ) THEN
         TEMP1 = AMIN1( SN / AAQQ, BIG / ( SQRTFLOAT( N ) )*AAPP ) )
*         AAQQ  = AAQQ*TEMP1
*         AAPP  = AAPP*TEMP1
      ELSE
         TEMP1 = ONE
      END IF
*
*     Scale, if necessary
*
      IF( TEMP1.NE.ONE ) THEN
         CALL SLASCL( 'G'00, ONE, TEMP1, N, 1, SVA, N, IERR )
      END IF
      SKL = TEMP1*SKL
      IF( SKL.NE.ONE ) THEN
         CALL SLASCL( JOBA, 00, ONE, SKL, M, N, A, LDA, IERR )
         SKL = ONE / SKL
      END IF
*
*     Row-cyclic Jacobi SVD algorithm with column pivoting
*
      EMPTSW = ( N*( N-1 ) ) / 2
      NOTROT = 0
      FASTR( 1 ) = ZERO
*
*     A is represented in factored form A = A * diag(WORK), where diag(WORK)
*     is initialized to identity. WORK is updated during fast scaled
*     rotations.
*
      DO 1868 q = 1, N
         WORK( q ) = ONE
 1868 CONTINUE
*
*
      SWBAND = 3
*[TP] SWBAND is a tuning parameter [TP]. It is meaningful and effective
*     if SGESVJ is used as a computational routine in the preconditioned
*     Jacobi SVD algorithm SGESVJ. For sweeps i=1:SWBAND the procedure
*     works on pivots inside a band-like region around the diagonal.
*     The boundaries are determined dynamically, based on the number of
*     pivots above a threshold.
*
      KBL = MIN08, N )
*[TP] KBL is a tuning parameter that defines the tile size in the
*     tiling of the p-q loops of pivot pairs. In general, an optimal
*     value of KBL depends on the matrix dimensions and on the
*     parameters of the computer's memory.
*
      NBL = N / KBL
      IF( ( NBL*KBL ).NE.N )NBL = NBL + 1
*
      BLSKIP = KBL**2
*[TP] BLKSKIP is a tuning parameter that depends on SWBAND and KBL.
*
      ROWSKIP = MIN05, KBL )
*[TP] ROWSKIP is a tuning parameter.
*
      LKAHEAD = 1
*[TP] LKAHEAD is a tuning parameter.
*
*     Quasi block transformations, using the lower (upper) triangular
*     structure of the input matrix. The quasi-block-cycling usually
*     invokes cubic convergence. Big part of this cycle is done inside
*     canonical subspaces of dimensions less than M.
*
      IF( ( LOWER .OR. UPPER ) .AND. ( N.GT.MAX0644*KBL ) ) ) THEN
*[TP] The number of partition levels and the actual partition are
*     tuning parameters.
         N4 = N / 4
         N2 = N / 2
         N34 = 3*N4
         IF( APPLV ) THEN
            q = 0
         ELSE
            q = 1
         END IF
*
         IF( LOWER ) THEN
*
*     This works very well on lower triangular matrices, in particular
*     in the framework of the preconditioned Jacobi SVD (xGEJSV).
*     The idea is simple:
*     [+ 0 0 0]   Note that Jacobi transformations of [0 0]
*     [+ + 0 0]                                       [0 0]
*     [+ + x 0]   actually work on [x 0]              [x 0]
*     [+ + x x]                    [x x].             [x x]
*
            CALL SGSVJ0( JOBV, M-N34, N-N34, A( N34+1, N34+1 ), LDA,
     $                   WORK( N34+1 ), SVA( N34+1 ), MVL,
     $                   V( N34*q+1, N34+1 ), LDV, EPSLN, SFMIN, TOL,
     $                   2, WORK( N+1 ), LWORK-N, IERR )
*
            CALL SGSVJ0( JOBV, M-N2, N34-N2, A( N2+1, N2+1 ), LDA,
     $                   WORK( N2+1 ), SVA( N2+1 ), MVL,
     $                   V( N2*q+1, N2+1 ), LDV, EPSLN, SFMIN, TOL, 2,
     $                   WORK( N+1 ), LWORK-N, IERR )
*
            CALL SGSVJ1( JOBV, M-N2, N-N2, N4, A( N2+1, N2+1 ), LDA,
     $                   WORK( N2+1 ), SVA( N2+1 ), MVL,
     $                   V( N2*q+1, N2+1 ), LDV, EPSLN, SFMIN, TOL, 1,
     $                   WORK( N+1 ), LWORK-N, IERR )
*
            CALL SGSVJ0( JOBV, M-N4, N2-N4, A( N4+1, N4+1 ), LDA,
     $                   WORK( N4+1 ), SVA( N4+1 ), MVL,
     $                   V( N4*q+1, N4+1 ), LDV, EPSLN, SFMIN, TOL, 1,
     $                   WORK( N+1 ), LWORK-N, IERR )
*
            CALL SGSVJ0( JOBV, M, N4, A, LDA, WORK, SVA, MVL, V, LDV,
     $                   EPSLN, SFMIN, TOL, 1, WORK( N+1 ), LWORK-N,
     $                   IERR )
*
            CALL SGSVJ1( JOBV, M, N2, N4, A, LDA, WORK, SVA, MVL, V,
     $                   LDV, EPSLN, SFMIN, TOL, 1, WORK( N+1 ),
     $                   LWORK-N, IERR )
*
*
         ELSE IF( UPPER ) THEN
*
*
            CALL SGSVJ0( JOBV, N4, N4, A, LDA, WORK, SVA, MVL, V, LDV,
     $                   EPSLN, SFMIN, TOL, 2, WORK( N+1 ), LWORK-N,
     $                   IERR )
*
            CALL SGSVJ0( JOBV, N2, N4, A( 1, N4+1 ), LDA, WORK( N4+1 ),
     $                   SVA( N4+1 ), MVL, V( N4*q+1, N4+1 ), LDV,
     $                   EPSLN, SFMIN, TOL, 1, WORK( N+1 ), LWORK-N,
     $                   IERR )
*
            CALL SGSVJ1( JOBV, N2, N2, N4, A, LDA, WORK, SVA, MVL, V,
     $                   LDV, EPSLN, SFMIN, TOL, 1, WORK( N+1 ),
     $                   LWORK-N, IERR )
*
            CALL SGSVJ0( JOBV, N2+N4, N4, A( 1, N2+1 ), LDA,
     $                   WORK( N2+1 ), SVA( N2+1 ), MVL,
     $                   V( N2*q+1, N2+1 ), LDV, EPSLN, SFMIN, TOL, 1,
     $                   WORK( N+1 ), LWORK-N, IERR )

         END IF
*
      END IF
*
*     .. Row-cyclic pivot strategy with de Rijk's pivoting ..
*
      DO 1993 i = 1, NSWEEP
*
*     .. go go go ...
*
         MXAAPQ = ZERO
         MXSINJ = ZERO
         ISWROT = 0
*
         NOTROT = 0
         PSKIPPED = 0
*
*     Each sweep is unrolled using KBL-by-KBL tiles over the pivot pairs
*     1 <= p < q <= N. This is the first step toward a blocked implementation
*     of the rotations. New implementation, based on block transformations,
*     is under development.
*
         DO 2000 ibr = 1, NBL
*
            igl = ( ibr-1 )*KBL + 1
*
            DO 1002 ir1 = 0MIN0( LKAHEAD, NBL-ibr )
*
               igl = igl + ir1*KBL
*
               DO 2001 p = igl, MIN0( igl+KBL-1, N-1 )
*
*     .. de Rijk's pivoting
*
                  q = ISAMAX( N-p+1, SVA( p ), 1 ) + p - 1
                  IF( p.NE.q ) THEN
                     CALL SSWAP( M, A( 1, p ), 1, A( 1, q ), 1 )
                     IF( RSVEC )CALL SSWAP( MVL, V( 1, p ), 1,
     $                                      V( 1, q ), 1 )
                     TEMP1 = SVA( p )
                     SVA( p ) = SVA( q )
                     SVA( q ) = TEMP1
                     TEMP1 = WORK( p )
                     WORK( p ) = WORK( q )
                     WORK( q ) = TEMP1
                  END IF
*
                  IF( ir1.EQ.0 ) THEN
*
*        Column norms are periodically updated by explicit
*        norm computation.
*        Caveat:
*        Unfortunately, some BLAS implementations compute SNRM2(M,A(1,p),1)
*        as SQRT(SDOT(M,A(1,p),1,A(1,p),1)), which may cause the result to
*        overflow for ||A(:,p)||_2 > SQRT(overflow_threshold), and to
*        underflow for ||A(:,p)||_2 < SQRT(underflow_threshold).
*        Hence, SNRM2 cannot be trusted, not even in the case when
*        the true norm is far from the under(over)flow boundaries.
*        If properly implemented SNRM2 is available, the IF-THEN-ELSE
*        below should read "AAPP = SNRM2( M, A(1,p), 1 ) * WORK(p)".
*
                     IF( ( SVA( p ).LT.ROOTBIG ) .AND.
     $                   ( SVA( p ).GT.ROOTSFMIN ) ) THEN
                        SVA( p ) = SNRM2( M, A( 1, p ), 1 )*WORK( p )
                     ELSE
                        TEMP1 = ZERO
                        AAPP = ONE
                        CALL SLASSQ( M, A( 1, p ), 1, TEMP1, AAPP )
                        SVA( p ) = TEMP1*SQRT( AAPP )*WORK( p )
                     END IF
                     AAPP = SVA( p )
                  ELSE
                     AAPP = SVA( p )
                  END IF
*
                  IF( AAPP.GT.ZERO ) THEN
*
                     PSKIPPED = 0
*
                     DO 2002 q = p + 1MIN0( igl+KBL-1, N )
*
                        AAQQ = SVA( q )
*
                        IF( AAQQ.GT.ZERO ) THEN
*
                           AAPP0 = AAPP
                           IF( AAQQ.GE.ONE ) THEN
                              ROTOK = ( SMALL*AAPP ).LE.AAQQ
                              IF( AAPP.LT.( BIG / AAQQ ) ) THEN
                                 AAPQ = ( SDOT( M, A( 1, p ), 1, A( 1,
     $                                  q ), 1 )*WORK( p )*WORK( q ) /
     $                                  AAQQ ) / AAPP
                              ELSE
                                 CALL SCOPY( M, A( 1, p ), 1,
     $                                       WORK( N+1 ), 1 )
                                 CALL SLASCL( 'G'00, AAPP,
     $                                        WORK( p ), M, 1,
     $                                        WORK( N+1 ), LDA, IERR )
                                 AAPQ = SDOT( M, WORK( N+1 ), 1,
     $                                  A( 1, q ), 1 )*WORK( q ) / AAQQ
                              END IF
                           ELSE
                              ROTOK = AAPP.LE.( AAQQ / SMALL )
                              IF( AAPP.GT.( SMALL / AAQQ ) ) THEN
                                 AAPQ = ( SDOT( M, A( 1, p ), 1, A( 1,
     $                                  q ), 1 )*WORK( p )*WORK( q ) /
     $                                  AAQQ ) / AAPP
                              ELSE
                                 CALL SCOPY( M, A( 1, q ), 1,
     $                                       WORK( N+1 ), 1 )
                                 CALL SLASCL( 'G'00, AAQQ,
     $                                        WORK( q ), M, 1,
     $                                        WORK( N+1 ), LDA, IERR )
                                 AAPQ = SDOT( M, WORK( N+1 ), 1,
     $                                  A( 1, p ), 1 )*WORK( p ) / AAPP
                              END IF
                           END IF
*
                           MXAAPQ = AMAX1( MXAAPQ, ABS( AAPQ ) )
*
*        TO rotate or NOT to rotate, THAT is the question ...
*
                           IFABS( AAPQ ).GT.TOL ) THEN
*
*           .. rotate
*[RTD]      ROTATED = ROTATED + ONE
*
                              IF( ir1.EQ.0 ) THEN
                                 NOTROT = 0
                                 PSKIPPED = 0
                                 ISWROT = ISWROT + 1
                              END IF
*
                              IF( ROTOK ) THEN
*
                                 AQOAP = AAQQ / AAPP
                                 APOAQ = AAPP / AAQQ
                                 THETA = -HALF*ABS( AQOAP-APOAQ ) / AAPQ
*
                                 IFABS( THETA ).GT.BIGTHETA ) THEN
*
                                    T = HALF / THETA
                                    FASTR( 3 ) = T*WORK( p ) / WORK( q )
                                    FASTR( 4 ) = -T*WORK( q ) /
     $                                           WORK( p )
                                    CALL SROTM( M, A( 1, p ), 1,
     $                                          A( 1, q ), 1, FASTR )
                                    IF( RSVEC )CALL SROTM( MVL,
     $                                              V( 1, p ), 1,
     $                                              V( 1, q ), 1,
     $                                              FASTR )
                                    SVA( q ) = AAQQ*SQRTAMAX1( ZERO,
     $                                         ONE+T*APOAQ*AAPQ ) )
                                    AAPP = AAPP*SQRTAMAX1( ZERO, 
     $                                         ONE-T*AQOAP*AAPQ ) )
                                    MXSINJ = AMAX1( MXSINJ, ABS( T ) )
*
                                 ELSE
*
*                 .. choose correct signum for THETA and rotate
*
                                    THSIGN = -SIGN( ONE, AAPQ )
                                    T = ONE / ( THETA+THSIGN*
     $                                  SQRT( ONE+THETA*THETA ) )
                                    CS = SQRT( ONE / ( ONE+T*T ) )
                                    SN = T*CS
*
                                    MXSINJ = AMAX1( MXSINJ, ABS( SN ) )
                                    SVA( q ) = AAQQ*SQRTAMAX1( ZERO,
     $                                         ONE+T*APOAQ*AAPQ ) )
                                    AAPP = AAPP*SQRTAMAX1( ZERO,
     $                                     ONE-T*AQOAP*AAPQ ) )
*
                                    APOAQ = WORK( p ) / WORK( q )
                                    AQOAP = WORK( q ) / WORK( p )
                                    IF( WORK( p ).GE.ONE ) THEN
                                       IF( WORK( q ).GE.ONE ) THEN
                                          FASTR( 3 ) = T*APOAQ
                                          FASTR( 4 ) = -T*AQOAP
                                          WORK( p ) = WORK( p )*CS
                                          WORK( q ) = WORK( q )*CS
                                          CALL SROTM( M, A( 1, p ), 1,
     $                                                A( 1, q ), 1,
     $                                                FASTR )
                                          IF( RSVEC )CALL SROTM( MVL,
     $                                        V( 1, p ), 1, V( 1, q ),
     $                                        1, FASTR )
                                       ELSE
                                          CALL SAXPY( M, -T*AQOAP,
     $                                                A( 1, q ), 1,
     $                                                A( 1, p ), 1 )
                                          CALL SAXPY( M, CS*SN*APOAQ,
     $                                                A( 1, p ), 1,
     $                                                A( 1, q ), 1 )
                                          WORK( p ) = WORK( p )*CS
                                          WORK( q ) = WORK( q ) / CS
                                          IF( RSVEC ) THEN
                                             CALL SAXPY( MVL, -T*AQOAP,
     $                                                   V( 1, q ), 1,
     $                                                   V( 1, p ), 1 )
                                             CALL SAXPY( MVL,
     $                                                   CS*SN*APOAQ,
     $                                                   V( 1, p ), 1,
     $                                                   V( 1, q ), 1 )
                                          END IF
                                       END IF
                                    ELSE
                                       IF( WORK( q ).GE.ONE ) THEN
                                          CALL SAXPY( M, T*APOAQ,
     $                                                A( 1, p ), 1,
     $                                                A( 1, q ), 1 )
                                          CALL SAXPY( M, -CS*SN*AQOAP,
     $                                                A( 1, q ), 1,
     $                                                A( 1, p ), 1 )
                                          WORK( p ) = WORK( p ) / CS
                                          WORK( q ) = WORK( q )*CS
                                          IF( RSVEC ) THEN
                                             CALL SAXPY( MVL, T*APOAQ,
     $                                                   V( 1, p ), 1,
     $                                                   V( 1, q ), 1 )
                                             CALL SAXPY( MVL,
     $                                                   -CS*SN*AQOAP,
     $                                                   V( 1, q ), 1,
     $                                                   V( 1, p ), 1 )
                                          END IF
                                       ELSE
                                          IF( WORK( p ).GE.WORK( q ) )
     $                                        THEN
                                             CALL SAXPY( M, -T*AQOAP,
     $                                                   A( 1, q ), 1,
     $                                                   A( 1, p ), 1 )
                                             CALL SAXPY( M, CS*SN*APOAQ,
     $                                                   A( 1, p ), 1,
     $                                                   A( 1, q ), 1 )
                                             WORK( p ) = WORK( p )*CS
                                             WORK( q ) = WORK( q ) / CS
                                             IF( RSVEC ) THEN
                                                CALL SAXPY( MVL,
     $                                               -T*AQOAP,
     $                                               V( 1, q ), 1,
     $                                               V( 1, p ), 1 )
                                                CALL SAXPY( MVL,
     $                                               CS*SN*APOAQ,
     $                                               V( 1, p ), 1,
     $                                               V( 1, q ), 1 )
                                             END IF
                                          ELSE
                                             CALL SAXPY( M, T*APOAQ,
     $                                                   A( 1, p ), 1,
     $                                                   A( 1, q ), 1 )
                                             CALL SAXPY( M,
     $                                                   -CS*SN*AQOAP,
     $                                                   A( 1, q ), 1,
     $                                                   A( 1, p ), 1 )
                                             WORK( p ) = WORK( p ) / CS
                                             WORK( q ) = WORK( q )*CS
                                             IF( RSVEC ) THEN
                                                CALL SAXPY( MVL,
     $                                               T*APOAQ, V( 1, p ),
     $                                               1, V( 1, q ), 1 )
                                                CALL SAXPY( MVL,
     $                                               -CS*SN*AQOAP,
     $                                               V( 1, q ), 1,
     $                                               V( 1, p ), 1 )
                                             END IF
                                          END IF
                                       END IF
                                    END IF
                                 END IF
*
                              ELSE
*              .. have to use modified Gram-Schmidt like transformation
                                 CALL SCOPY( M, A( 1, p ), 1,
     $                                       WORK( N+1 ), 1 )
                                 CALL SLASCL( 'G'00, AAPP, ONE, M,
     $                                        1, WORK( N+1 ), LDA,
     $                                        IERR )
                                 CALL SLASCL( 'G'00, AAQQ, ONE, M,
     $                                        1, A( 1, q ), LDA, IERR )
                                 TEMP1 = -AAPQ*WORK( p ) / WORK( q )
                                 CALL SAXPY( M, TEMP1, WORK( N+1 ), 1,
     $                                       A( 1, q ), 1 )
                                 CALL SLASCL( 'G'00, ONE, AAQQ, M,
     $                                        1, A( 1, q ), LDA, IERR )
                                 SVA( q ) = AAQQ*SQRTAMAX1( ZERO,
     $                                      ONE-AAPQ*AAPQ ) )
                                 MXSINJ = AMAX1( MXSINJ, SFMIN )
                              END IF
*           END IF ROTOK THEN ... ELSE
*
*           In the case of cancellation in updating SVA(q), SVA(p)
*           recompute SVA(q), SVA(p).
*
                              IF( ( SVA( q ) / AAQQ )**2.LE.ROOTEPS )
     $                            THEN
                                 IF( ( AAQQ.LT.ROOTBIG ) .AND.
     $                               ( AAQQ.GT.ROOTSFMIN ) ) THEN
                                    SVA( q ) = SNRM2( M, A( 1, q ), 1 )*
     $                                         WORK( q )
                                 ELSE
                                    T = ZERO
                                    AAQQ = ONE
                                    CALL SLASSQ( M, A( 1, q ), 1, T,
     $                                           AAQQ )
                                    SVA( q ) = T*SQRT( AAQQ )*WORK( q )
                                 END IF
                              END IF
                              IF( ( AAPP / AAPP0 ).LE.ROOTEPS ) THEN
                                 IF( ( AAPP.LT.ROOTBIG ) .AND.
     $                               ( AAPP.GT.ROOTSFMIN ) ) THEN
                                    AAPP = SNRM2( M, A( 1, p ), 1 )*
     $                                     WORK( p )
                                 ELSE
                                    T = ZERO
                                    AAPP = ONE
                                    CALL SLASSQ( M, A( 1, p ), 1, T,
     $                                           AAPP )
                                    AAPP = T*SQRT( AAPP )*WORK( p )
                                 END IF
                                 SVA( p ) = AAPP
                              END IF
*
                           ELSE
*        A(:,p) and A(:,q) already numerically orthogonal
                              IF( ir1.EQ.0 )NOTROT = NOTROT + 1
*[RTD]      SKIPPED  = SKIPPED  + 1
                              PSKIPPED = PSKIPPED + 1
                           END IF
                        ELSE
*        A(:,q) is zero column
                           IF( ir1.EQ.0 )NOTROT = NOTROT + 1
                           PSKIPPED = PSKIPPED + 1
                        END IF
*
                        IF( ( i.LE.SWBAND ) .AND.
     $                      ( PSKIPPED.GT.ROWSKIP ) ) THEN
                           IF( ir1.EQ.0 )AAPP = -AAPP
                           NOTROT = 0
                           GO TO 2103
                        END IF
*
 2002                CONTINUE
*     END q-LOOP
*
 2103                CONTINUE
*     bailed out of q-loop
*
                     SVA( p ) = AAPP
*
                  ELSE
                     SVA( p ) = AAPP
                     IF( ( ir1.EQ.0 ) .AND. ( AAPP.EQ.ZERO ) )
     $                   NOTROT = NOTROT + MIN0( igl+KBL-1, N ) - p
                  END IF
*
 2001          CONTINUE
*     end of the p-loop
*     end of doing the block ( ibr, ibr )
 1002       CONTINUE
*     end of ir1-loop
*
* ... go to the off diagonal blocks
*
            igl = ( ibr-1 )*KBL + 1
*
            DO 2010 jbc = ibr + 1, NBL
*
               jgl = ( jbc-1 )*KBL + 1
*
*        doing the block at ( ibr, jbc )
*
               IJBLSK = 0
               DO 2100 p = igl, MIN0( igl+KBL-1, N )
*
                  AAPP = SVA( p )
                  IF( AAPP.GT.ZERO ) THEN
*
                     PSKIPPED = 0
*
                     DO 2200 q = jgl, MIN0( jgl+KBL-1, N )
*
                        AAQQ = SVA( q )
                        IF( AAQQ.GT.ZERO ) THEN
                           AAPP0 = AAPP
*
*     .. M x 2 Jacobi SVD ..
*
*        Safe Gram matrix computation
*
                           IF( AAQQ.GE.ONE ) THEN
                              IF( AAPP.GE.AAQQ ) THEN
                                 ROTOK = ( SMALL*AAPP ).LE.AAQQ
                              ELSE
                                 ROTOK = ( SMALL*AAQQ ).LE.AAPP
                              END IF
                              IF( AAPP.LT.( BIG / AAQQ ) ) THEN
                                 AAPQ = ( SDOT( M, A( 1, p ), 1, A( 1,
     $                                  q ), 1 )*WORK( p )*WORK( q ) /
     $                                  AAQQ ) / AAPP
                              ELSE
                                 CALL SCOPY( M, A( 1, p ), 1,
     $                                       WORK( N+1 ), 1 )
                                 CALL SLASCL( 'G'00, AAPP,
     $                                        WORK( p ), M, 1,
     $                                        WORK( N+1 ), LDA, IERR )
                                 AAPQ = SDOT( M, WORK( N+1 ), 1,
     $                                  A( 1, q ), 1 )*WORK( q ) / AAQQ
                              END IF
                           ELSE
                              IF( AAPP.GE.AAQQ ) THEN
                                 ROTOK = AAPP.LE.( AAQQ / SMALL )
                              ELSE
                                 ROTOK = AAQQ.LE.( AAPP / SMALL )
                              END IF
                              IF( AAPP.GT.( SMALL / AAQQ ) ) THEN
                                 AAPQ = ( SDOT( M, A( 1, p ), 1, A( 1,
     $                                  q ), 1 )*WORK( p )*WORK( q ) /
     $                                  AAQQ ) / AAPP
                              ELSE
                                 CALL SCOPY( M, A( 1, q ), 1,
     $                                       WORK( N+1 ), 1 )
                                 CALL SLASCL( 'G'00, AAQQ,
     $                                        WORK( q ), M, 1,
     $                                        WORK( N+1 ), LDA, IERR )
                                 AAPQ = SDOT( M, WORK( N+1 ), 1,
     $                                  A( 1, p ), 1 )*WORK( p ) / AAPP
                              END IF
                           END IF
*
                           MXAAPQ = AMAX1( MXAAPQ, ABS( AAPQ ) )
*
*        TO rotate or NOT to rotate, THAT is the question ...
*
                           IFABS( AAPQ ).GT.TOL ) THEN
                              NOTROT = 0
*[RTD]      ROTATED  = ROTATED + 1
                              PSKIPPED = 0
                              ISWROT = ISWROT + 1
*
                              IF( ROTOK ) THEN
*
                                 AQOAP = AAQQ / AAPP
                                 APOAQ = AAPP / AAQQ
                                 THETA = -HALF*ABS( AQOAP-APOAQ ) / AAPQ
                                 IF( AAQQ.GT.AAPP0 )THETA = -THETA
*
                                 IFABS( THETA ).GT.BIGTHETA ) THEN
                                    T = HALF / THETA
                                    FASTR( 3 ) = T*WORK( p ) / WORK( q )
                                    FASTR( 4 ) = -T*WORK( q ) /
     $                                           WORK( p )
                                    CALL SROTM( M, A( 1, p ), 1,
     $                                          A( 1, q ), 1, FASTR )
                                    IF( RSVEC )CALL SROTM( MVL,
     $                                              V( 1, p ), 1,
     $                                              V( 1, q ), 1,
     $                                              FASTR )
                                    SVA( q ) = AAQQ*SQRTAMAX1( ZERO,
     $                                         ONE+T*APOAQ*AAPQ ) )
                                    AAPP = AAPP*SQRTAMAX1( ZERO,
     $                                     ONE-T*AQOAP*AAPQ ) )
                                    MXSINJ = AMAX1( MXSINJ, ABS( T ) )
                                 ELSE
*
*                 .. choose correct signum for THETA and rotate
*
                                    THSIGN = -SIGN( ONE, AAPQ )
                                    IF( AAQQ.GT.AAPP0 )THSIGN = -THSIGN
                                    T = ONE / ( THETA+THSIGN*
     $                                  SQRT( ONE+THETA*THETA ) )
                                    CS = SQRT( ONE / ( ONE+T*T ) )
                                    SN = T*CS
                                    MXSINJ = AMAX1( MXSINJ, ABS( SN ) )
                                    SVA( q ) = AAQQ*SQRTAMAX1( ZERO,
     $                                         ONE+T*APOAQ*AAPQ ) )
                                    AAPP = AAPP*SQRTAMAX1( ZERO,  
     $                                         ONE-T*AQOAP*AAPQ ) )
*
                                    APOAQ = WORK( p ) / WORK( q )
                                    AQOAP = WORK( q ) / WORK( p )
                                    IF( WORK( p ).GE.ONE ) THEN
*
                                       IF( WORK( q ).GE.ONE ) THEN
                                          FASTR( 3 ) = T*APOAQ
                                          FASTR( 4 ) = -T*AQOAP
                                          WORK( p ) = WORK( p )*CS
                                          WORK( q ) = WORK( q )*CS
                                          CALL SROTM( M, A( 1, p ), 1,
     $                                                A( 1, q ), 1,
     $                                                FASTR )
                                          IF( RSVEC )CALL SROTM( MVL,
     $                                        V( 1, p ), 1, V( 1, q ),
     $                                        1, FASTR )
                                       ELSE
                                          CALL SAXPY( M, -T*AQOAP,
     $                                                A( 1, q ), 1,
     $                                                A( 1, p ), 1 )
                                          CALL SAXPY( M, CS*SN*APOAQ,
     $                                                A( 1, p ), 1,
     $                                                A( 1, q ), 1 )
                                          IF( RSVEC ) THEN
                                             CALL SAXPY( MVL, -T*AQOAP,
     $                                                   V( 1, q ), 1,
     $                                                   V( 1, p ), 1 )
                                             CALL SAXPY( MVL,
     $                                                   CS*SN*APOAQ,
     $                                                   V( 1, p ), 1,
     $                                                   V( 1, q ), 1 )
                                          END IF
                                          WORK( p ) = WORK( p )*CS
                                          WORK( q ) = WORK( q ) / CS
                                       END IF
                                    ELSE
                                       IF( WORK( q ).GE.ONE ) THEN
                                          CALL SAXPY( M, T*APOAQ,
     $                                                A( 1, p ), 1,
     $                                                A( 1, q ), 1 )
                                          CALL SAXPY( M, -CS*SN*AQOAP,
     $                                                A( 1, q ), 1,
     $                                                A( 1, p ), 1 )
                                          IF( RSVEC ) THEN
                                             CALL SAXPY( MVL, T*APOAQ,
     $                                                   V( 1, p ), 1,
     $                                                   V( 1, q ), 1 )
                                             CALL SAXPY( MVL,
     $                                                   -CS*SN*AQOAP,
     $                                                   V( 1, q ), 1,
     $                                                   V( 1, p ), 1 )
                                          END IF
                                          WORK( p ) = WORK( p ) / CS
                                          WORK( q ) = WORK( q )*CS
                                       ELSE
                                          IF( WORK( p ).GE.WORK( q ) )
     $                                        THEN
                                             CALL SAXPY( M, -T*AQOAP,
     $                                                   A( 1, q ), 1,
     $                                                   A( 1, p ), 1 )
                                             CALL SAXPY( M, CS*SN*APOAQ,
     $                                                   A( 1, p ), 1,
     $                                                   A( 1, q ), 1 )
                                             WORK( p ) = WORK( p )*CS
                                             WORK( q ) = WORK( q ) / CS
                                             IF( RSVEC ) THEN
                                                CALL SAXPY( MVL,
     $                                               -T*AQOAP,
     $                                               V( 1, q ), 1,
     $                                               V( 1, p ), 1 )
                                                CALL SAXPY( MVL,
     $                                               CS*SN*APOAQ,
     $                                               V( 1, p ), 1,
     $                                               V( 1, q ), 1 )
                                             END IF
                                          ELSE
                                             CALL SAXPY( M, T*APOAQ,
     $                                                   A( 1, p ), 1,
     $                                                   A( 1, q ), 1 )
                                             CALL SAXPY( M,
     $                                                   -CS*SN*AQOAP,
     $                                                   A( 1, q ), 1,
     $                                                   A( 1, p ), 1 )
                                             WORK( p ) = WORK( p ) / CS
                                             WORK( q ) = WORK( q )*CS
                                             IF( RSVEC ) THEN
                                                CALL SAXPY( MVL,
     $                                               T*APOAQ, V( 1, p ),
     $                                               1, V( 1, q ), 1 )
                                                CALL SAXPY( MVL,
     $                                               -CS*SN*AQOAP,
     $                                               V( 1, q ), 1,
     $                                               V( 1, p ), 1 )
                                             END IF
                                          END IF
                                       END IF
                                    END IF
                                 END IF
*
                              ELSE
                                 IF( AAPP.GT.AAQQ ) THEN
                                    CALL SCOPY( M, A( 1, p ), 1,
     $                                          WORK( N+1 ), 1 )
                                    CALL SLASCL( 'G'00, AAPP, ONE,
     $                                           M, 1, WORK( N+1 ), LDA,
     $                                           IERR )
                                    CALL SLASCL( 'G'00, AAQQ, ONE,
     $                                           M, 1, A( 1, q ), LDA,
     $                                           IERR )
                                    TEMP1 = -AAPQ*WORK( p ) / WORK( q )
                                    CALL SAXPY( M, TEMP1, WORK( N+1 ),
     $                                          1, A( 1, q ), 1 )
                                    CALL SLASCL( 'G'00, ONE, AAQQ,
     $                                           M, 1, A( 1, q ), LDA,
     $                                           IERR )
                                    SVA( q ) = AAQQ*SQRTAMAX1( ZERO,
     $                                         ONE-AAPQ*AAPQ ) )
                                    MXSINJ = AMAX1( MXSINJ, SFMIN )
                                 ELSE
                                    CALL SCOPY( M, A( 1, q ), 1,
     $                                          WORK( N+1 ), 1 )
                                    CALL SLASCL( 'G'00, AAQQ, ONE,
     $                                           M, 1, WORK( N+1 ), LDA,
     $                                           IERR )
                                    CALL SLASCL( 'G'00, AAPP, ONE,
     $                                           M, 1, A( 1, p ), LDA,
     $                                           IERR )
                                    TEMP1 = -AAPQ*WORK( q ) / WORK( p )
                                    CALL SAXPY( M, TEMP1, WORK( N+1 ),
     $                                          1, A( 1, p ), 1 )
                                    CALL SLASCL( 'G'00, ONE, AAPP,
     $                                           M, 1, A( 1, p ), LDA,
     $                                           IERR )
                                    SVA( p ) = AAPP*SQRTAMAX1( ZERO,
     $                                         ONE-AAPQ*AAPQ ) )
                                    MXSINJ = AMAX1( MXSINJ, SFMIN )
                                 END IF
                              END IF
*           END IF ROTOK THEN ... ELSE
*
*           In the case of cancellation in updating SVA(q)
*           .. recompute SVA(q)
                              IF( ( SVA( q ) / AAQQ )**2.LE.ROOTEPS )
     $                            THEN
                                 IF( ( AAQQ.LT.ROOTBIG ) .AND.
     $                               ( AAQQ.GT.ROOTSFMIN ) ) THEN
                                    SVA( q ) = SNRM2( M, A( 1, q ), 1 )*
     $                                         WORK( q )
                                 ELSE
                                    T = ZERO
                                    AAQQ = ONE
                                    CALL SLASSQ( M, A( 1, q ), 1, T,
     $                                           AAQQ )
                                    SVA( q ) = T*SQRT( AAQQ )*WORK( q )
                                 END IF
                              END IF
                              IF( ( AAPP / AAPP0 )**2.LE.ROOTEPS ) THEN
                                 IF( ( AAPP.LT.ROOTBIG ) .AND.
     $                               ( AAPP.GT.ROOTSFMIN ) ) THEN
                                    AAPP = SNRM2( M, A( 1, p ), 1 )*
     $                                     WORK( p )
                                 ELSE
                                    T = ZERO
                                    AAPP = ONE
                                    CALL SLASSQ( M, A( 1, p ), 1, T,
     $                                           AAPP )
                                    AAPP = T*SQRT( AAPP )*WORK( p )
                                 END IF
                                 SVA( p ) = AAPP
                              END IF
*              end of OK rotation
                           ELSE
                              NOTROT = NOTROT + 1
*[RTD]      SKIPPED  = SKIPPED  + 1
                              PSKIPPED = PSKIPPED + 1
                              IJBLSK = IJBLSK + 1
                           END IF
                        ELSE
                           NOTROT = NOTROT + 1
                           PSKIPPED = PSKIPPED + 1
                           IJBLSK = IJBLSK + 1
                        END IF
*
                        IF( ( i.LE.SWBAND ) .AND. ( IJBLSK.GE.BLSKIP ) )
     $                      THEN
                           SVA( p ) = AAPP
                           NOTROT = 0
                           GO TO 2011
                        END IF
                        IF( ( i.LE.SWBAND ) .AND.
     $                      ( PSKIPPED.GT.ROWSKIP ) ) THEN
                           AAPP = -AAPP
                           NOTROT = 0
                           GO TO 2203
                        END IF
*
 2200                CONTINUE
*        end of the q-loop
 2203                CONTINUE
*
                     SVA( p ) = AAPP
*
                  ELSE
*
                     IF( AAPP.EQ.ZERO )NOTROT = NOTROT +
     $                   MIN0( jgl+KBL-1, N ) - jgl + 1
                     IF( AAPP.LT.ZERO )NOTROT = 0
*
                  END IF
*
 2100          CONTINUE
*     end of the p-loop
 2010       CONTINUE
*     end of the jbc-loop
 2011       CONTINUE
*2011 bailed out of the jbc-loop
            DO 2012 p = igl, MIN0( igl+KBL-1, N )
               SVA( p ) = ABS( SVA( p ) )
 2012       CONTINUE
***
 2000    CONTINUE
*2000 :: end of the ibr-loop
*
*     .. update SVA(N)
         IF( ( SVA( N ).LT.ROOTBIG ) .AND. ( SVA( N ).GT.ROOTSFMIN ) )
     $       THEN
            SVA( N ) = SNRM2( M, A( 1, N ), 1 )*WORK( N )
         ELSE
            T = ZERO
            AAPP = ONE
            CALL SLASSQ( M, A( 1, N ), 1, T, AAPP )
            SVA( N ) = T*SQRT( AAPP )*WORK( N )
         END IF
*
*     Additional steering devices
*
         IF( ( i.LT.SWBAND ) .AND. ( ( MXAAPQ.LE.ROOTTOL ) .OR.
     $       ( ISWROT.LE.N ) ) )SWBAND = i
*
         IF( ( i.GT.SWBAND+1 ) .AND. ( MXAAPQ.LT.SQRTFLOAT( N ) )*
     $       TOL ) .AND. ( FLOAT( N )*MXAAPQ*MXSINJ.LT.TOL ) ) THEN
            GO TO 1994
         END IF
*
         IF( NOTROT.GE.EMPTSW )GO TO 1994
*
 1993 CONTINUE
*     end i=1:NSWEEP loop
*
* #:( Reaching this point means that the procedure has not converged.
      INFO = NSWEEP - 1
      GO TO 1995
*
 1994 CONTINUE
* #:) Reaching this point means numerical convergence after the i-th
*     sweep.
*
      INFO = 0
* #:) INFO = 0 confirms successful iterations.
 1995 CONTINUE
*
*     Sort the singular values and find how many are above
*     the underflow threshold.
*
      N2 = 0
      N4 = 0
      DO 5991 p = 1, N - 1
         q = ISAMAX( N-p+1, SVA( p ), 1 ) + p - 1
         IF( p.NE.q ) THEN
            TEMP1 = SVA( p )
            SVA( p ) = SVA( q )
            SVA( q ) = TEMP1
            TEMP1 = WORK( p )
            WORK( p ) = WORK( q )
            WORK( q ) = TEMP1
            CALL SSWAP( M, A( 1, p ), 1, A( 1, q ), 1 )
            IF( RSVEC )CALL SSWAP( MVL, V( 1, p ), 1, V( 1, q ), 1 )
         END IF
         IF( SVA( p ).NE.ZERO ) THEN
            N4 = N4 + 1
            IF( SVA( p )*SKL.GT.SFMIN )N2 = N2 + 1
         END IF
 5991 CONTINUE
      IF( SVA( N ).NE.ZERO ) THEN
         N4 = N4 + 1
         IF( SVA( N )*SKL.GT.SFMIN )N2 = N2 + 1
      END IF
*
*     Normalize the left singular vectors.
*
      IF( LSVEC .OR. UCTOL ) THEN
         DO 1998 p = 1, N2
            CALL SSCAL( M, WORK( p ) / SVA( p ), A( 1, p ), 1 )
 1998    CONTINUE
      END IF
*
*     Scale the product of Jacobi rotations (assemble the fast rotations).
*
      IF( RSVEC ) THEN
         IF( APPLV ) THEN
            DO 2398 p = 1, N
               CALL SSCAL( MVL, WORK( p ), V( 1, p ), 1 )
 2398       CONTINUE
         ELSE
            DO 2399 p = 1, N
               TEMP1 = ONE / SNRM2( MVL, V( 1, p ), 1 )
               CALL SSCAL( MVL, TEMP1, V( 1, p ), 1 )
 2399       CONTINUE
         END IF
      END IF
*
*     Undo scaling, if necessary (and possible).
      IF( ( ( SKL.GT.ONE ) .AND. ( SVA( 1 ).LT.( BIG /
     $    SKL ) ) ) .OR. ( ( SKL.LT.ONE ) .AND. ( SVA( N2 ).GT.
     $    ( SFMIN / SKL ) ) ) ) THEN
         DO 2400 p = 1, N
            SVA( p ) = SKL*SVA( p )
 2400    CONTINUE
         SKL = ONE
      END IF
*
      WORK( 1 ) = SKL
*     The singular values of A are SKL*SVA(1:N). If SKL.NE.ONE
*     then some of the singular values may overflow or underflow and
*     the spectrum is given in this factored representation.
*
      WORK( 2 ) = FLOAT( N4 )
*     N4 is the number of computed nonzero singular values of A.
*
      WORK( 3 ) = FLOAT( N2 )
*     N2 is the number of singular values of A greater than SFMIN.
*     If N2<N, SVA(N2:N) contains ZEROS and/or denormalized numbers
*     that may carry some information.
*
      WORK( 4 ) = FLOAT( i )
*     i is the index of the last sweep before declaring convergence.
*
      WORK( 5 ) = MXAAPQ
*     MXAAPQ is the largest absolute value of scaled pivots in the
*     last sweep
*
      WORK( 6 ) = MXSINJ
*     MXSINJ is the largest absolute value of the sines of Jacobi angles
*     in the last sweep
*
      RETURN
*     ..
*     .. END OF SGESVJ
*     ..
      END