1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
     225
     226
     227
     228
     229
     230
     231
     232
     233
     234
     235
     236
     237
     238
     239
     240
     241
     242
     243
     244
     245
     246
     247
     248
     249
     250
     251
     252
     253
     254
     255
     256
     257
     258
     259
     260
     261
     262
     263
     264
     265
     266
     267
     268
     269
     270
     271
     272
     273
     274
     275
     276
     277
     278
     279
     280
     281
     282
     283
     284
     285
     286
     287
     288
     289
     290
     291
     292
     293
     294
     295
     296
     297
     298
     299
     300
     301
     302
     303
     304
     305
     306
     307
     308
     309
     310
     311
     312
     313
     314
     315
     316
     317
     318
     319
     320
     321
     322
     323
     324
     325
     326
     327
     328
     329
     330
     331
     332
     333
     334
     335
     336
     337
     338
     339
     340
     341
     342
     343
     344
     345
     346
     347
     348
     349
     350
     351
     352
     353
     354
     355
     356
     357
     358
     359
     360
     361
     362
     363
     364
     365
     366
     367
     368
     369
     370
     371
     372
     373
     374
     375
     376
     377
     378
     379
     380
     381
     382
     383
     384
     385
     386
     387
     388
     389
     390
     391
     392
     393
     394
     395
     396
     397
     398
     399
     400
     401
     402
     403
     404
     405
     406
     407
     408
     409
     410
     411
     412
     413
     414
     415
     416
     417
     418
     419
     420
     421
     422
     423
     424
     425
     426
     427
     428
     429
     430
     431
     432
     433
     434
     435
     436
     437
     438
     439
     440
     441
     442
     443
     444
     445
     446
     447
     448
     449
     450
     451
     452
     453
     454
     455
     456
     457
     458
     459
     460
     461
     462
     463
     464
     465
     466
     467
     468
     469
     470
     471
     472
     473
     474
     475
     476
     477
     478
     479
     480
     481
     482
     483
     484
     485
     486
     487
     488
     489
     490
      SUBROUTINE SGGEV( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHAR, ALPHAI,
     $                  BETA, VL, LDVL, VR, LDVR, WORK, LWORK, INFO )
*
*  -- LAPACK driver routine (version 3.2) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2006
*
*     .. Scalar Arguments ..
      CHARACTER          JOBVL, JOBVR
      INTEGER            INFO, LDA, LDB, LDVL, LDVR, LWORK, N
*     ..
*     .. Array Arguments ..
      REAL               A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
     $                   B( LDB, * ), BETA( * ), VL( LDVL, * ),
     $                   VR( LDVR, * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  SGGEV computes for a pair of N-by-N real nonsymmetric matrices (A,B)
*  the generalized eigenvalues, and optionally, the left and/or right
*  generalized eigenvectors.
*
*  A generalized eigenvalue for a pair of matrices (A,B) is a scalar
*  lambda or a ratio alpha/beta = lambda, such that A - lambda*B is
*  singular. It is usually represented as the pair (alpha,beta), as
*  there is a reasonable interpretation for beta=0, and even for both
*  being zero.
*
*  The right eigenvector v(j) corresponding to the eigenvalue lambda(j)
*  of (A,B) satisfies
*
*                   A * v(j) = lambda(j) * B * v(j).
*
*  The left eigenvector u(j) corresponding to the eigenvalue lambda(j)
*  of (A,B) satisfies
*
*                   u(j)**H * A  = lambda(j) * u(j)**H * B .
*
*  where u(j)**H is the conjugate-transpose of u(j).
*
*
*  Arguments
*  =========
*
*  JOBVL   (input) CHARACTER*1
*          = 'N':  do not compute the left generalized eigenvectors;
*          = 'V':  compute the left generalized eigenvectors.
*
*  JOBVR   (input) CHARACTER*1
*          = 'N':  do not compute the right generalized eigenvectors;
*          = 'V':  compute the right generalized eigenvectors.
*
*  N       (input) INTEGER
*          The order of the matrices A, B, VL, and VR.  N >= 0.
*
*  A       (input/output) REAL array, dimension (LDA, N)
*          On entry, the matrix A in the pair (A,B).
*          On exit, A has been overwritten.
*
*  LDA     (input) INTEGER
*          The leading dimension of A.  LDA >= max(1,N).
*
*  B       (input/output) REAL array, dimension (LDB, N)
*          On entry, the matrix B in the pair (A,B).
*          On exit, B has been overwritten.
*
*  LDB     (input) INTEGER
*          The leading dimension of B.  LDB >= max(1,N).
*
*  ALPHAR  (output) REAL array, dimension (N)
*  ALPHAI  (output) REAL array, dimension (N)
*  BETA    (output) REAL array, dimension (N)
*          On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
*          be the generalized eigenvalues.  If ALPHAI(j) is zero, then
*          the j-th eigenvalue is real; if positive, then the j-th and
*          (j+1)-st eigenvalues are a complex conjugate pair, with
*          ALPHAI(j+1) negative.
*
*          Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j)
*          may easily over- or underflow, and BETA(j) may even be zero.
*          Thus, the user should avoid naively computing the ratio
*          alpha/beta.  However, ALPHAR and ALPHAI will be always less
*          than and usually comparable with norm(A) in magnitude, and
*          BETA always less than and usually comparable with norm(B).
*
*  VL      (output) REAL array, dimension (LDVL,N)
*          If JOBVL = 'V', the left eigenvectors u(j) are stored one
*          after another in the columns of VL, in the same order as
*          their eigenvalues. If the j-th eigenvalue is real, then
*          u(j) = VL(:,j), the j-th column of VL. If the j-th and
*          (j+1)-th eigenvalues form a complex conjugate pair, then
*          u(j) = VL(:,j)+i*VL(:,j+1) and u(j+1) = VL(:,j)-i*VL(:,j+1).
*          Each eigenvector is scaled so the largest component has
*          abs(real part)+abs(imag. part)=1.
*          Not referenced if JOBVL = 'N'.
*
*  LDVL    (input) INTEGER
*          The leading dimension of the matrix VL. LDVL >= 1, and
*          if JOBVL = 'V', LDVL >= N.
*
*  VR      (output) REAL array, dimension (LDVR,N)
*          If JOBVR = 'V', the right eigenvectors v(j) are stored one
*          after another in the columns of VR, in the same order as
*          their eigenvalues. If the j-th eigenvalue is real, then
*          v(j) = VR(:,j), the j-th column of VR. If the j-th and
*          (j+1)-th eigenvalues form a complex conjugate pair, then
*          v(j) = VR(:,j)+i*VR(:,j+1) and v(j+1) = VR(:,j)-i*VR(:,j+1).
*          Each eigenvector is scaled so the largest component has
*          abs(real part)+abs(imag. part)=1.
*          Not referenced if JOBVR = 'N'.
*
*  LDVR    (input) INTEGER
*          The leading dimension of the matrix VR. LDVR >= 1, and
*          if JOBVR = 'V', LDVR >= N.
*
*  WORK    (workspace/output) REAL array, dimension (MAX(1,LWORK))
*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
*  LWORK   (input) INTEGER
*          The dimension of the array WORK.  LWORK >= max(1,8*N).
*          For good performance, LWORK must generally be larger.
*
*          If LWORK = -1, then a workspace query is assumed; the routine
*          only calculates the optimal size of the WORK array, returns
*          this value as the first entry of the WORK array, and no error
*          message related to LWORK is issued by XERBLA.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value.
*          = 1,...,N:
*                The QZ iteration failed.  No eigenvectors have been
*                calculated, but ALPHAR(j), ALPHAI(j), and BETA(j)
*                should be correct for j=INFO+1,...,N.
*          > N:  =N+1: other than QZ iteration failed in SHGEQZ.
*                =N+2: error return from STGEVC.
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            ILASCL, ILBSCL, ILV, ILVL, ILVR, LQUERY
      CHARACTER          CHTEMP
      INTEGER            ICOLS, IERR, IHI, IJOBVL, IJOBVR, ILEFT, ILO,
     $                   IN, IRIGHT, IROWS, ITAU, IWRK, JC, JR, MAXWRK,
     $                   MINWRK
      REAL               ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS,
     $                   SMLNUM, TEMP
*     ..
*     .. Local Arrays ..
      LOGICAL            LDUMMA( 1 )
*     ..
*     .. External Subroutines ..
      EXTERNAL           SGEQRF, SGGBAK, SGGBAL, SGGHRD, SHGEQZ, SLABAD,
     $                   SLACPY, SLASCL, SLASET, SORGQR, SORMQR, STGEVC,
     $                   XERBLA
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ILAENV
      REAL               SLAMCH, SLANGE
      EXTERNAL           LSAME, ILAENV, SLAMCH, SLANGE
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABSMAXSQRT
*     ..
*     .. Executable Statements ..
*
*     Decode the input arguments
*
      IF( LSAME( JOBVL, 'N' ) ) THEN
         IJOBVL = 1
         ILVL = .FALSE.
      ELSE IF( LSAME( JOBVL, 'V' ) ) THEN
         IJOBVL = 2
         ILVL = .TRUE.
      ELSE
         IJOBVL = -1
         ILVL = .FALSE.
      END IF
*
      IF( LSAME( JOBVR, 'N' ) ) THEN
         IJOBVR = 1
         ILVR = .FALSE.
      ELSE IF( LSAME( JOBVR, 'V' ) ) THEN
         IJOBVR = 2
         ILVR = .TRUE.
      ELSE
         IJOBVR = -1
         ILVR = .FALSE.
      END IF
      ILV = ILVL .OR. ILVR
*
*     Test the input arguments
*
      INFO = 0
      LQUERY = ( LWORK.EQ.-1 )
      IF( IJOBVL.LE.0 ) THEN
         INFO = -1
      ELSE IF( IJOBVR.LE.0 ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( LDA.LT.MAX1, N ) ) THEN
         INFO = -5
      ELSE IF( LDB.LT.MAX1, N ) ) THEN
         INFO = -7
      ELSE IF( LDVL.LT.1 .OR. ( ILVL .AND. LDVL.LT.N ) ) THEN
         INFO = -12
      ELSE IF( LDVR.LT.1 .OR. ( ILVR .AND. LDVR.LT.N ) ) THEN
         INFO = -14
      END IF
*
*     Compute workspace
*      (Note: Comments in the code beginning "Workspace:" describe the
*       minimal amount of workspace needed at that point in the code,
*       as well as the preferred amount for good performance.
*       NB refers to the optimal block size for the immediately
*       following subroutine, as returned by ILAENV. The workspace is
*       computed assuming ILO = 1 and IHI = N, the worst case.)
*
      IF( INFO.EQ.0 ) THEN
         MINWRK = MAX18*N )
         MAXWRK = MAX1, N*7 +
     $                 ILAENV( 1'SGEQRF'' ', N, 1, N, 0 ) ) )
         MAXWRK = MAX( MAXWRK, N*7 +
     $                 ILAENV( 1'SORMQR'' ', N, 1, N, 0 ) ) )
         IF( ILVL ) THEN
            MAXWRK = MAX( MAXWRK, N*7 +
     $                 ILAENV( 1'SORGQR'' ', N, 1, N, -1 ) ) )
         END IF
         WORK( 1 ) = MAXWRK
*
         IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY )
     $      INFO = -16
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SGGEV '-INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
*     Get machine constants
*
      EPS = SLAMCH( 'P' )
      SMLNUM = SLAMCH( 'S' )
      BIGNUM = ONE / SMLNUM
      CALL SLABAD( SMLNUM, BIGNUM )
      SMLNUM = SQRT( SMLNUM ) / EPS
      BIGNUM = ONE / SMLNUM
*
*     Scale A if max element outside range [SMLNUM,BIGNUM]
*
      ANRM = SLANGE( 'M', N, N, A, LDA, WORK )
      ILASCL = .FALSE.
      IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
         ANRMTO = SMLNUM
         ILASCL = .TRUE.
      ELSE IF( ANRM.GT.BIGNUM ) THEN
         ANRMTO = BIGNUM
         ILASCL = .TRUE.
      END IF
      IF( ILASCL )
     $   CALL SLASCL( 'G'00, ANRM, ANRMTO, N, N, A, LDA, IERR )
*
*     Scale B if max element outside range [SMLNUM,BIGNUM]
*
      BNRM = SLANGE( 'M', N, N, B, LDB, WORK )
      ILBSCL = .FALSE.
      IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
         BNRMTO = SMLNUM
         ILBSCL = .TRUE.
      ELSE IF( BNRM.GT.BIGNUM ) THEN
         BNRMTO = BIGNUM
         ILBSCL = .TRUE.
      END IF
      IF( ILBSCL )
     $   CALL SLASCL( 'G'00, BNRM, BNRMTO, N, N, B, LDB, IERR )
*
*     Permute the matrices A, B to isolate eigenvalues if possible
*     (Workspace: need 6*N)
*
      ILEFT = 1
      IRIGHT = N + 1
      IWRK = IRIGHT + N
      CALL SGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, WORK( ILEFT ),
     $             WORK( IRIGHT ), WORK( IWRK ), IERR )
*
*     Reduce B to triangular form (QR decomposition of B)
*     (Workspace: need N, prefer N*NB)
*
      IROWS = IHI + 1 - ILO
      IF( ILV ) THEN
         ICOLS = N + 1 - ILO
      ELSE
         ICOLS = IROWS
      END IF
      ITAU = IWRK
      IWRK = ITAU + IROWS
      CALL SGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
     $             WORK( IWRK ), LWORK+1-IWRK, IERR )
*
*     Apply the orthogonal transformation to matrix A
*     (Workspace: need N, prefer N*NB)
*
      CALL SORMQR( 'L''T', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
     $             WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ),
     $             LWORK+1-IWRK, IERR )
*
*     Initialize VL
*     (Workspace: need N, prefer N*NB)
*
      IF( ILVL ) THEN
         CALL SLASET( 'Full', N, N, ZERO, ONE, VL, LDVL )
         IF( IROWS.GT.1 ) THEN
            CALL SLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
     $                   VL( ILO+1, ILO ), LDVL )
         END IF
         CALL SORGQR( IROWS, IROWS, IROWS, VL( ILO, ILO ), LDVL,
     $                WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR )
      END IF
*
*     Initialize VR
*
      IF( ILVR )
     $   CALL SLASET( 'Full', N, N, ZERO, ONE, VR, LDVR )
*
*     Reduce to generalized Hessenberg form
*     (Workspace: none needed)
*
      IF( ILV ) THEN
*
*        Eigenvectors requested -- work on whole matrix.
*
         CALL SGGHRD( JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB, VL,
     $                LDVL, VR, LDVR, IERR )
      ELSE
         CALL SGGHRD( 'N''N', IROWS, 1, IROWS, A( ILO, ILO ), LDA,
     $                B( ILO, ILO ), LDB, VL, LDVL, VR, LDVR, IERR )
      END IF
*
*     Perform QZ algorithm (Compute eigenvalues, and optionally, the
*     Schur forms and Schur vectors)
*     (Workspace: need N)
*
      IWRK = ITAU
      IF( ILV ) THEN
         CHTEMP = 'S'
      ELSE
         CHTEMP = 'E'
      END IF
      CALL SHGEQZ( CHTEMP, JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB,
     $             ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR,
     $             WORK( IWRK ), LWORK+1-IWRK, IERR )
      IF( IERR.NE.0 ) THEN
         IF( IERR.GT.0 .AND. IERR.LE.N ) THEN
            INFO = IERR
         ELSE IF( IERR.GT..AND. IERR.LE.2*N ) THEN
            INFO = IERR - N
         ELSE
            INFO = N + 1
         END IF
         GO TO 110
      END IF
*
*     Compute Eigenvectors
*     (Workspace: need 6*N)
*
      IF( ILV ) THEN
         IF( ILVL ) THEN
            IF( ILVR ) THEN
               CHTEMP = 'B'
            ELSE
               CHTEMP = 'L'
            END IF
         ELSE
            CHTEMP = 'R'
         END IF
         CALL STGEVC( CHTEMP, 'B', LDUMMA, N, A, LDA, B, LDB, VL, LDVL,
     $                VR, LDVR, N, IN, WORK( IWRK ), IERR )
         IF( IERR.NE.0 ) THEN
            INFO = N + 2
            GO TO 110
         END IF
*
*        Undo balancing on VL and VR and normalization
*        (Workspace: none needed)
*
         IF( ILVL ) THEN
            CALL SGGBAK( 'P''L', N, ILO, IHI, WORK( ILEFT ),
     $                   WORK( IRIGHT ), N, VL, LDVL, IERR )
            DO 50 JC = 1, N
               IF( ALPHAI( JC ).LT.ZERO )
     $            GO TO 50
               TEMP = ZERO
               IF( ALPHAI( JC ).EQ.ZERO ) THEN
                  DO 10 JR = 1, N
                     TEMP = MAX( TEMP, ABS( VL( JR, JC ) ) )
   10             CONTINUE
               ELSE
                  DO 20 JR = 1, N
                     TEMP = MAX( TEMP, ABS( VL( JR, JC ) )+
     $                      ABS( VL( JR, JC+1 ) ) )
   20             CONTINUE
               END IF
               IF( TEMP.LT.SMLNUM )
     $            GO TO 50
               TEMP = ONE / TEMP
               IF( ALPHAI( JC ).EQ.ZERO ) THEN
                  DO 30 JR = 1, N
                     VL( JR, JC ) = VL( JR, JC )*TEMP
   30             CONTINUE
               ELSE
                  DO 40 JR = 1, N
                     VL( JR, JC ) = VL( JR, JC )*TEMP
                     VL( JR, JC+1 ) = VL( JR, JC+1 )*TEMP
   40             CONTINUE
               END IF
   50       CONTINUE
         END IF
         IF( ILVR ) THEN
            CALL SGGBAK( 'P''R', N, ILO, IHI, WORK( ILEFT ),
     $                   WORK( IRIGHT ), N, VR, LDVR, IERR )
            DO 100 JC = 1, N
               IF( ALPHAI( JC ).LT.ZERO )
     $            GO TO 100
               TEMP = ZERO
               IF( ALPHAI( JC ).EQ.ZERO ) THEN
                  DO 60 JR = 1, N
                     TEMP = MAX( TEMP, ABS( VR( JR, JC ) ) )
   60             CONTINUE
               ELSE
                  DO 70 JR = 1, N
                     TEMP = MAX( TEMP, ABS( VR( JR, JC ) )+
     $                      ABS( VR( JR, JC+1 ) ) )
   70             CONTINUE
               END IF
               IF( TEMP.LT.SMLNUM )
     $            GO TO 100
               TEMP = ONE / TEMP
               IF( ALPHAI( JC ).EQ.ZERO ) THEN
                  DO 80 JR = 1, N
                     VR( JR, JC ) = VR( JR, JC )*TEMP
   80             CONTINUE
               ELSE
                  DO 90 JR = 1, N
                     VR( JR, JC ) = VR( JR, JC )*TEMP
                     VR( JR, JC+1 ) = VR( JR, JC+1 )*TEMP
   90             CONTINUE
               END IF
  100       CONTINUE
         END IF
*
*        End of eigenvector calculation
*
      END IF
*
*     Undo scaling if necessary
*
      IF( ILASCL ) THEN
         CALL SLASCL( 'G'00, ANRMTO, ANRM, N, 1, ALPHAR, N, IERR )
         CALL SLASCL( 'G'00, ANRMTO, ANRM, N, 1, ALPHAI, N, IERR )
      END IF
*
      IF( ILBSCL ) THEN
         CALL SLASCL( 'G'00, BNRMTO, BNRM, N, 1, BETA, N, IERR )
      END IF
*
  110 CONTINUE
*
      WORK( 1 ) = MAXWRK
*
      RETURN
*
*     End of SGGEV
*
      END