1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
     225
     226
     227
     228
     229
     230
     231
     232
     233
     234
     235
     236
     237
     238
     239
     240
     241
     242
     243
     244
     245
     246
     247
     248
     249
     250
     251
     252
     253
     254
     255
     256
     257
     258
     259
     260
     261
     262
     263
     264
     265
     266
     267
     268
     269
     270
     271
     272
     273
     274
     275
     276
     277
     278
     279
     280
     281
     282
     283
     284
     285
     286
     287
     288
     289
     290
     291
     292
     293
     294
     295
     296
     297
     298
     299
     300
     301
     302
     303
     304
     305
     306
     307
     308
     309
     310
     311
     312
     313
     314
     315
     316
     317
     318
     319
     320
     321
     322
     323
     324
     325
     326
     327
     328
     329
     330
     331
     332
     333
     334
     335
     336
     337
     338
     339
     340
     341
     342
     343
     344
     345
     346
     347
     348
     349
     350
     351
     352
     353
     354
     355
     356
     357
     358
     359
     360
     361
     362
     363
     364
     365
     366
     367
     368
     369
     370
     371
     372
     373
     374
     375
     376
     377
     378
     379
     380
     381
     382
     383
     384
     385
     386
     387
     388
     389
     390
     391
     392
     393
     394
     395
     396
     397
     398
     399
     400
     401
     402
     403
     404
     405
     406
     407
     408
     409
     410
     411
     412
     413
     414
     415
     416
     417
     418
     419
     420
     421
     422
     423
     424
     425
     426
     427
     428
     429
     430
     431
     432
     433
     434
     435
     436
     437
     438
     439
     440
     441
     442
     443
     444
     445
     446
     447
     448
     449
     450
     451
     452
     453
     454
     455
     456
     457
     458
     459
     460
     461
     462
     463
     464
     465
     466
     467
     468
     469
     470
     471
     472
     473
     474
     475
     476
     477
     478
     479
     480
     481
     482
     483
     484
     485
     486
     487
     488
     489
     490
     491
     492
     493
     494
     495
     496
     497
     498
     499
     500
     501
     502
     503
     504
     505
     506
     507
     508
     509
     510
     511
     512
     513
     514
     515
     516
     517
     518
     519
     520
     521
     522
     523
     524
     525
     526
     527
     528
     529
     530
     531
     532
     533
     534
      SUBROUTINE SLAEBZ( IJOB, NITMAX, N, MMAX, MINP, NBMIN, ABSTOL,
     $                   RELTOL, PIVMIN, D, E, E2, NVAL, AB, C, MOUT,
     $                   NAB, WORK, IWORK, INFO )
*
*  -- LAPACK auxiliary routine (version 3.3.1) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*  -- April 2011                                                      --
*
*     .. Scalar Arguments ..
      INTEGER            IJOB, INFO, MINP, MMAX, MOUT, N, NBMIN, NITMAX
      REAL               ABSTOL, PIVMIN, RELTOL
*     ..
*     .. Array Arguments ..
      INTEGER            IWORK( * ), NAB( MMAX, * ), NVAL( * )
      REAL               AB( MMAX, * ), C( * ), D( * ), E( * ), E2( * ),
     $                   WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  SLAEBZ contains the iteration loops which compute and use the
*  function N(w), which is the count of eigenvalues of a symmetric
*  tridiagonal matrix T less than or equal to its argument  w.  It
*  performs a choice of two types of loops:
*
*  IJOB=1, followed by
*  IJOB=2: It takes as input a list of intervals and returns a list of
*          sufficiently small intervals whose union contains the same
*          eigenvalues as the union of the original intervals.
*          The input intervals are (AB(j,1),AB(j,2)], j=1,...,MINP.
*          The output interval (AB(j,1),AB(j,2)] will contain
*          eigenvalues NAB(j,1)+1,...,NAB(j,2), where 1 <= j <= MOUT.
*
*  IJOB=3: It performs a binary search in each input interval
*          (AB(j,1),AB(j,2)] for a point  w(j)  such that
*          N(w(j))=NVAL(j), and uses  C(j)  as the starting point of
*          the search.  If such a w(j) is found, then on output
*          AB(j,1)=AB(j,2)=w.  If no such w(j) is found, then on output
*          (AB(j,1),AB(j,2)] will be a small interval containing the
*          point where N(w) jumps through NVAL(j), unless that point
*          lies outside the initial interval.
*
*  Note that the intervals are in all cases half-open intervals,
*  i.e., of the form  (a,b] , which includes  b  but not  a .
*
*  To avoid underflow, the matrix should be scaled so that its largest
*  element is no greater than  overflow**(1/2) * underflow**(1/4)
*  in absolute value.  To assure the most accurate computation
*  of small eigenvalues, the matrix should be scaled to be
*  not much smaller than that, either.
*
*  See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal
*  Matrix", Report CS41, Computer Science Dept., Stanford
*  University, July 21, 1966
*
*  Note: the arguments are, in general, *not* checked for unreasonable
*  values.
*
*  Arguments
*  =========
*
*  IJOB    (input) INTEGER
*          Specifies what is to be done:
*          = 1:  Compute NAB for the initial intervals.
*          = 2:  Perform bisection iteration to find eigenvalues of T.
*          = 3:  Perform bisection iteration to invert N(w), i.e.,
*                to find a point which has a specified number of
*                eigenvalues of T to its left.
*          Other values will cause SLAEBZ to return with INFO=-1.
*
*  NITMAX  (input) INTEGER
*          The maximum number of "levels" of bisection to be
*          performed, i.e., an interval of width W will not be made
*          smaller than 2^(-NITMAX) * W.  If not all intervals
*          have converged after NITMAX iterations, then INFO is set
*          to the number of non-converged intervals.
*
*  N       (input) INTEGER
*          The dimension n of the tridiagonal matrix T.  It must be at
*          least 1.
*
*  MMAX    (input) INTEGER
*          The maximum number of intervals.  If more than MMAX intervals
*          are generated, then SLAEBZ will quit with INFO=MMAX+1.
*
*  MINP    (input) INTEGER
*          The initial number of intervals.  It may not be greater than
*          MMAX.
*
*  NBMIN   (input) INTEGER
*          The smallest number of intervals that should be processed
*          using a vector loop.  If zero, then only the scalar loop
*          will be used.
*
*  ABSTOL  (input) REAL
*          The minimum (absolute) width of an interval.  When an
*          interval is narrower than ABSTOL, or than RELTOL times the
*          larger (in magnitude) endpoint, then it is considered to be
*          sufficiently small, i.e., converged.  This must be at least
*          zero.
*
*  RELTOL  (input) REAL
*          The minimum relative width of an interval.  When an interval
*          is narrower than ABSTOL, or than RELTOL times the larger (in
*          magnitude) endpoint, then it is considered to be
*          sufficiently small, i.e., converged.  Note: this should
*          always be at least radix*machine epsilon.
*
*  PIVMIN  (input) REAL
*          The minimum absolute value of a "pivot" in the Sturm
*          sequence loop.  This *must* be at least  max |e(j)**2| *
*          safe_min  and at least safe_min, where safe_min is at least
*          the smallest number that can divide one without overflow.
*
*  D       (input) REAL array, dimension (N)
*          The diagonal elements of the tridiagonal matrix T.
*
*  E       (input) REAL array, dimension (N)
*          The offdiagonal elements of the tridiagonal matrix T in
*          positions 1 through N-1.  E(N) is arbitrary.
*
*  E2      (input) REAL array, dimension (N)
*          The squares of the offdiagonal elements of the tridiagonal
*          matrix T.  E2(N) is ignored.
*
*  NVAL    (input/output) INTEGER array, dimension (MINP)
*          If IJOB=1 or 2, not referenced.
*          If IJOB=3, the desired values of N(w).  The elements of NVAL
*          will be reordered to correspond with the intervals in AB.
*          Thus, NVAL(j) on output will not, in general be the same as
*          NVAL(j) on input, but it will correspond with the interval
*          (AB(j,1),AB(j,2)] on output.
*
*  AB      (input/output) REAL array, dimension (MMAX,2)
*          The endpoints of the intervals.  AB(j,1) is  a(j), the left
*          endpoint of the j-th interval, and AB(j,2) is b(j), the
*          right endpoint of the j-th interval.  The input intervals
*          will, in general, be modified, split, and reordered by the
*          calculation.
*
*  C       (input/output) REAL array, dimension (MMAX)
*          If IJOB=1, ignored.
*          If IJOB=2, workspace.
*          If IJOB=3, then on input C(j) should be initialized to the
*          first search point in the binary search.
*
*  MOUT    (output) INTEGER
*          If IJOB=1, the number of eigenvalues in the intervals.
*          If IJOB=2 or 3, the number of intervals output.
*          If IJOB=3, MOUT will equal MINP.
*
*  NAB     (input/output) INTEGER array, dimension (MMAX,2)
*          If IJOB=1, then on output NAB(i,j) will be set to N(AB(i,j)).
*          If IJOB=2, then on input, NAB(i,j) should be set.  It must
*             satisfy the condition:
*             N(AB(i,1)) <= NAB(i,1) <= NAB(i,2) <= N(AB(i,2)),
*             which means that in interval i only eigenvalues
*             NAB(i,1)+1,...,NAB(i,2) will be considered.  Usually,
*             NAB(i,j)=N(AB(i,j)), from a previous call to SLAEBZ with
*             IJOB=1.
*             On output, NAB(i,j) will contain
*             max(na(k),min(nb(k),N(AB(i,j)))), where k is the index of
*             the input interval that the output interval
*             (AB(j,1),AB(j,2)] came from, and na(k) and nb(k) are the
*             the input values of NAB(k,1) and NAB(k,2).
*          If IJOB=3, then on output, NAB(i,j) contains N(AB(i,j)),
*             unless N(w) > NVAL(i) for all search points  w , in which
*             case NAB(i,1) will not be modified, i.e., the output
*             value will be the same as the input value (modulo
*             reorderings -- see NVAL and AB), or unless N(w) < NVAL(i)
*             for all search points  w , in which case NAB(i,2) will
*             not be modified.  Normally, NAB should be set to some
*             distinctive value(s) before SLAEBZ is called.
*
*  WORK    (workspace) REAL array, dimension (MMAX)
*          Workspace.
*
*  IWORK   (workspace) INTEGER array, dimension (MMAX)
*          Workspace.
*
*  INFO    (output) INTEGER
*          = 0:       All intervals converged.
*          = 1--MMAX: The last INFO intervals did not converge.
*          = MMAX+1:  More than MMAX intervals were generated.
*
*  Further Details
*  ===============
*
*      This routine is intended to be called only by other LAPACK
*  routines, thus the interface is less user-friendly.  It is intended
*  for two purposes:
*
*  (a) finding eigenvalues.  In this case, SLAEBZ should have one or
*      more initial intervals set up in AB, and SLAEBZ should be called
*      with IJOB=1.  This sets up NAB, and also counts the eigenvalues.
*      Intervals with no eigenvalues would usually be thrown out at
*      this point.  Also, if not all the eigenvalues in an interval i
*      are desired, NAB(i,1) can be increased or NAB(i,2) decreased.
*      For example, set NAB(i,1)=NAB(i,2)-1 to get the largest
*      eigenvalue.  SLAEBZ is then called with IJOB=2 and MMAX
*      no smaller than the value of MOUT returned by the call with
*      IJOB=1.  After this (IJOB=2) call, eigenvalues NAB(i,1)+1
*      through NAB(i,2) are approximately AB(i,1) (or AB(i,2)) to the
*      tolerance specified by ABSTOL and RELTOL.
*
*  (b) finding an interval (a',b'] containing eigenvalues w(f),...,w(l).
*      In this case, start with a Gershgorin interval  (a,b).  Set up
*      AB to contain 2 search intervals, both initially (a,b).  One
*      NVAL element should contain  f-1  and the other should contain  l
*      , while C should contain a and b, resp.  NAB(i,1) should be -1
*      and NAB(i,2) should be N+1, to flag an error if the desired
*      interval does not lie in (a,b).  SLAEBZ is then called with
*      IJOB=3.  On exit, if w(f-1) < w(f), then one of the intervals --
*      j -- will have AB(j,1)=AB(j,2) and NAB(j,1)=NAB(j,2)=f-1, while
*      if, to the specified tolerance, w(f-k)=...=w(f+r), k > 0 and r
*      >= 0, then the interval will have  N(AB(j,1))=NAB(j,1)=f-k and
*      N(AB(j,2))=NAB(j,2)=f+r.  The cases w(l) < w(l+1) and
*      w(l-r)=...=w(l+k) are handled similarly.
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, TWO, HALF
      PARAMETER          ( ZERO = 0.0E0, TWO = 2.0E0,
     $                   HALF = 1.0E0 / TWO )
*     ..
*     .. Local Scalars ..
      INTEGER            ITMP1, ITMP2, J, JI, JIT, JP, KF, KFNEW, KL,
     $                   KLNEW
      REAL               TMP1, TMP2
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABSMAXMIN
*     ..
*     .. Executable Statements ..
*
*     Check for Errors
*
      INFO = 0
      IF( IJOB.LT.1 .OR. IJOB.GT.3 ) THEN
         INFO = -1
         RETURN
      END IF
*
*     Initialize NAB
*
      IF( IJOB.EQ.1 ) THEN
*
*        Compute the number of eigenvalues in the initial intervals.
*
         MOUT = 0
         DO 30 JI = 1, MINP
            DO 20 JP = 12
               TMP1 = D( 1 ) - AB( JI, JP )
               IFABS( TMP1 ).LT.PIVMIN )
     $            TMP1 = -PIVMIN
               NAB( JI, JP ) = 0
               IF( TMP1.LE.ZERO )
     $            NAB( JI, JP ) = 1
*
               DO 10 J = 2, N
                  TMP1 = D( J ) - E2( J-1 ) / TMP1 - AB( JI, JP )
                  IFABS( TMP1 ).LT.PIVMIN )
     $               TMP1 = -PIVMIN
                  IF( TMP1.LE.ZERO )
     $               NAB( JI, JP ) = NAB( JI, JP ) + 1
   10          CONTINUE
   20       CONTINUE
            MOUT = MOUT + NAB( JI, 2 ) - NAB( JI, 1 )
   30    CONTINUE
         RETURN
      END IF
*
*     Initialize for loop
*
*     KF and KL have the following meaning:
*        Intervals 1,...,KF-1 have converged.
*        Intervals KF,...,KL  still need to be refined.
*
      KF = 1
      KL = MINP
*
*     If IJOB=2, initialize C.
*     If IJOB=3, use the user-supplied starting point.
*
      IF( IJOB.EQ.2 ) THEN
         DO 40 JI = 1, MINP
            C( JI ) = HALF*( AB( JI, 1 )+AB( JI, 2 ) )
   40    CONTINUE
      END IF
*
*     Iteration loop
*
      DO 130 JIT = 1, NITMAX
*
*        Loop over intervals
*
         IF( KL-KF+1.GE.NBMIN .AND. NBMIN.GT.0 ) THEN
*
*           Begin of Parallel Version of the loop
*
            DO 60 JI = KF, KL
*
*              Compute N(c), the number of eigenvalues less than c
*
               WORK( JI ) = D( 1 ) - C( JI )
               IWORK( JI ) = 0
               IF( WORK( JI ).LE.PIVMIN ) THEN
                  IWORK( JI ) = 1
                  WORK( JI ) = MIN( WORK( JI ), -PIVMIN )
               END IF
*
               DO 50 J = 2, N
                  WORK( JI ) = D( J ) - E2( J-1 ) / WORK( JI ) - C( JI )
                  IF( WORK( JI ).LE.PIVMIN ) THEN
                     IWORK( JI ) = IWORK( JI ) + 1
                     WORK( JI ) = MIN( WORK( JI ), -PIVMIN )
                  END IF
   50          CONTINUE
   60       CONTINUE
*
            IF( IJOB.LE.2 ) THEN
*
*              IJOB=2: Choose all intervals containing eigenvalues.
*
               KLNEW = KL
               DO 70 JI = KF, KL
*
*                 Insure that N(w) is monotone
*
                  IWORK( JI ) = MIN( NAB( JI, 2 ),
     $                          MAX( NAB( JI, 1 ), IWORK( JI ) ) )
*
*                 Update the Queue -- add intervals if both halves
*                 contain eigenvalues.
*
                  IF( IWORK( JI ).EQ.NAB( JI, 2 ) ) THEN
*
*                    No eigenvalue in the upper interval:
*                    just use the lower interval.
*
                     AB( JI, 2 ) = C( JI )
*
                  ELSE IF( IWORK( JI ).EQ.NAB( JI, 1 ) ) THEN
*
*                    No eigenvalue in the lower interval:
*                    just use the upper interval.
*
                     AB( JI, 1 ) = C( JI )
                  ELSE
                     KLNEW = KLNEW + 1
                     IF( KLNEW.LE.MMAX ) THEN
*
*                       Eigenvalue in both intervals -- add upper to
*                       queue.
*
                        AB( KLNEW, 2 ) = AB( JI, 2 )
                        NAB( KLNEW, 2 ) = NAB( JI, 2 )
                        AB( KLNEW, 1 ) = C( JI )
                        NAB( KLNEW, 1 ) = IWORK( JI )
                        AB( JI, 2 ) = C( JI )
                        NAB( JI, 2 ) = IWORK( JI )
                     ELSE
                        INFO = MMAX + 1
                     END IF
                  END IF
   70          CONTINUE
               IF( INFO.NE.0 )
     $            RETURN
               KL = KLNEW
            ELSE
*
*              IJOB=3: Binary search.  Keep only the interval containing
*                      w   s.t. N(w) = NVAL
*
               DO 80 JI = KF, KL
                  IF( IWORK( JI ).LE.NVAL( JI ) ) THEN
                     AB( JI, 1 ) = C( JI )
                     NAB( JI, 1 ) = IWORK( JI )
                  END IF
                  IF( IWORK( JI ).GE.NVAL( JI ) ) THEN
                     AB( JI, 2 ) = C( JI )
                     NAB( JI, 2 ) = IWORK( JI )
                  END IF
   80          CONTINUE
            END IF
*
         ELSE
*
*           End of Parallel Version of the loop
*
*           Begin of Serial Version of the loop
*
            KLNEW = KL
            DO 100 JI = KF, KL
*
*              Compute N(w), the number of eigenvalues less than w
*
               TMP1 = C( JI )
               TMP2 = D( 1 ) - TMP1
               ITMP1 = 0
               IF( TMP2.LE.PIVMIN ) THEN
                  ITMP1 = 1
                  TMP2 = MIN( TMP2, -PIVMIN )
               END IF
*
               DO 90 J = 2, N
                  TMP2 = D( J ) - E2( J-1 ) / TMP2 - TMP1
                  IF( TMP2.LE.PIVMIN ) THEN
                     ITMP1 = ITMP1 + 1
                     TMP2 = MIN( TMP2, -PIVMIN )
                  END IF
   90          CONTINUE
*
               IF( IJOB.LE.2 ) THEN
*
*                 IJOB=2: Choose all intervals containing eigenvalues.
*
*                 Insure that N(w) is monotone
*
                  ITMP1 = MIN( NAB( JI, 2 ),
     $                    MAX( NAB( JI, 1 ), ITMP1 ) )
*
*                 Update the Queue -- add intervals if both halves
*                 contain eigenvalues.
*
                  IF( ITMP1.EQ.NAB( JI, 2 ) ) THEN
*
*                    No eigenvalue in the upper interval:
*                    just use the lower interval.
*
                     AB( JI, 2 ) = TMP1
*
                  ELSE IF( ITMP1.EQ.NAB( JI, 1 ) ) THEN
*
*                    No eigenvalue in the lower interval:
*                    just use the upper interval.
*
                     AB( JI, 1 ) = TMP1
                  ELSE IF( KLNEW.LT.MMAX ) THEN
*
*                    Eigenvalue in both intervals -- add upper to queue.
*
                     KLNEW = KLNEW + 1
                     AB( KLNEW, 2 ) = AB( JI, 2 )
                     NAB( KLNEW, 2 ) = NAB( JI, 2 )
                     AB( KLNEW, 1 ) = TMP1
                     NAB( KLNEW, 1 ) = ITMP1
                     AB( JI, 2 ) = TMP1
                     NAB( JI, 2 ) = ITMP1
                  ELSE
                     INFO = MMAX + 1
                     RETURN
                  END IF
               ELSE
*
*                 IJOB=3: Binary search.  Keep only the interval
*                         containing  w  s.t. N(w) = NVAL
*
                  IF( ITMP1.LE.NVAL( JI ) ) THEN
                     AB( JI, 1 ) = TMP1
                     NAB( JI, 1 ) = ITMP1
                  END IF
                  IF( ITMP1.GE.NVAL( JI ) ) THEN
                     AB( JI, 2 ) = TMP1
                     NAB( JI, 2 ) = ITMP1
                  END IF
               END IF
  100       CONTINUE
            KL = KLNEW
*
         END IF
*
*        Check for convergence
*
         KFNEW = KF
         DO 110 JI = KF, KL
            TMP1 = ABS( AB( JI, 2 )-AB( JI, 1 ) )
            TMP2 = MAXABS( AB( JI, 2 ) ), ABS( AB( JI, 1 ) ) )
            IF( TMP1.LT.MAX( ABSTOL, PIVMIN, RELTOL*TMP2 ) .OR.
     $          NAB( JI, 1 ).GE.NAB( JI, 2 ) ) THEN
*
*              Converged -- Swap with position KFNEW,
*                           then increment KFNEW
*
               IF( JI.GT.KFNEW ) THEN
                  TMP1 = AB( JI, 1 )
                  TMP2 = AB( JI, 2 )
                  ITMP1 = NAB( JI, 1 )
                  ITMP2 = NAB( JI, 2 )
                  AB( JI, 1 ) = AB( KFNEW, 1 )
                  AB( JI, 2 ) = AB( KFNEW, 2 )
                  NAB( JI, 1 ) = NAB( KFNEW, 1 )
                  NAB( JI, 2 ) = NAB( KFNEW, 2 )
                  AB( KFNEW, 1 ) = TMP1
                  AB( KFNEW, 2 ) = TMP2
                  NAB( KFNEW, 1 ) = ITMP1
                  NAB( KFNEW, 2 ) = ITMP2
                  IF( IJOB.EQ.3 ) THEN
                     ITMP1 = NVAL( JI )
                     NVAL( JI ) = NVAL( KFNEW )
                     NVAL( KFNEW ) = ITMP1
                  END IF
               END IF
               KFNEW = KFNEW + 1
            END IF
  110    CONTINUE
         KF = KFNEW
*
*        Choose Midpoints
*
         DO 120 JI = KF, KL
            C( JI ) = HALF*( AB( JI, 1 )+AB( JI, 2 ) )
  120    CONTINUE
*
*        If no more intervals to refine, quit.
*
         IF( KF.GT.KL )
     $      GO TO 140
  130 CONTINUE
*
*     Converged
*
  140 CONTINUE
      INFO = MAX( KL+1-KF, 0 )
      MOUT = KL
*
      RETURN
*
*     End of SLAEBZ
*
      END