1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
     225
     226
     227
     228
     229
     230
     231
     232
     233
     234
     235
     236
     237
     238
     239
     240
     241
     242
     243
     244
     245
     246
     247
     248
     249
     250
     251
     252
     253
     254
     255
     256
     257
     258
     259
     260
     261
     262
     263
     264
     265
     266
     267
     268
     269
     270
     271
     272
     273
     274
     275
     276
     277
     278
     279
     280
     281
     282
     283
     284
     285
     286
     287
     288
     289
     290
     291
     292
     293
     294
     295
     296
     297
     298
     299
     300
     301
     302
     303
     304
     305
     306
     307
     308
     309
     310
     311
     312
     313
     314
     315
     316
     317
     318
     319
     320
     321
     322
     323
     324
     325
     326
     327
     328
     329
     330
     331
     332
     333
     334
     335
     336
     337
     338
     339
     340
     341
     342
     343
     344
     345
     346
     347
     348
     349
     350
      SUBROUTINE SLAED0( ICOMPQ, QSIZ, N, D, E, Q, LDQ, QSTORE, LDQS,
     $                   WORK, IWORK, INFO )
*
*  -- LAPACK routine (version 3.2) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2006
*
*     .. Scalar Arguments ..
      INTEGER            ICOMPQ, INFO, LDQ, LDQS, N, QSIZ
*     ..
*     .. Array Arguments ..
      INTEGER            IWORK( * )
      REAL               D( * ), E( * ), Q( LDQ, * ), QSTORE( LDQS, * ),
     $                   WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  SLAED0 computes all eigenvalues and corresponding eigenvectors of a
*  symmetric tridiagonal matrix using the divide and conquer method.
*
*  Arguments
*  =========
*
*  ICOMPQ  (input) INTEGER
*          = 0:  Compute eigenvalues only.
*          = 1:  Compute eigenvectors of original dense symmetric matrix
*                also.  On entry, Q contains the orthogonal matrix used
*                to reduce the original matrix to tridiagonal form.
*          = 2:  Compute eigenvalues and eigenvectors of tridiagonal
*                matrix.
*
*  QSIZ   (input) INTEGER
*         The dimension of the orthogonal matrix used to reduce
*         the full matrix to tridiagonal form.  QSIZ >= N if ICOMPQ = 1.
*
*  N      (input) INTEGER
*         The dimension of the symmetric tridiagonal matrix.  N >= 0.
*
*  D      (input/output) REAL array, dimension (N)
*         On entry, the main diagonal of the tridiagonal matrix.
*         On exit, its eigenvalues.
*
*  E      (input) REAL array, dimension (N-1)
*         The off-diagonal elements of the tridiagonal matrix.
*         On exit, E has been destroyed.
*
*  Q      (input/output) REAL array, dimension (LDQ, N)
*         On entry, Q must contain an N-by-N orthogonal matrix.
*         If ICOMPQ = 0    Q is not referenced.
*         If ICOMPQ = 1    On entry, Q is a subset of the columns of the
*                          orthogonal matrix used to reduce the full
*                          matrix to tridiagonal form corresponding to
*                          the subset of the full matrix which is being
*                          decomposed at this time.
*         If ICOMPQ = 2    On entry, Q will be the identity matrix.
*                          On exit, Q contains the eigenvectors of the
*                          tridiagonal matrix.
*
*  LDQ    (input) INTEGER
*         The leading dimension of the array Q.  If eigenvectors are
*         desired, then  LDQ >= max(1,N).  In any case,  LDQ >= 1.
*
*  QSTORE (workspace) REAL array, dimension (LDQS, N)
*         Referenced only when ICOMPQ = 1.  Used to store parts of
*         the eigenvector matrix when the updating matrix multiplies
*         take place.
*
*  LDQS   (input) INTEGER
*         The leading dimension of the array QSTORE.  If ICOMPQ = 1,
*         then  LDQS >= max(1,N).  In any case,  LDQS >= 1.
*
*  WORK   (workspace) REAL array,
*         If ICOMPQ = 0 or 1, the dimension of WORK must be at least
*                     1 + 3*N + 2*N*lg N + 2*N**2
*                     ( lg( N ) = smallest integer k
*                                 such that 2^k >= N )
*         If ICOMPQ = 2, the dimension of WORK must be at least
*                     4*N + N**2.
*
*  IWORK  (workspace) INTEGER array,
*         If ICOMPQ = 0 or 1, the dimension of IWORK must be at least
*                        6 + 6*N + 5*N*lg N.
*                        ( lg( N ) = smallest integer k
*                                    such that 2^k >= N )
*         If ICOMPQ = 2, the dimension of IWORK must be at least
*                        3 + 5*N.
*
*  INFO   (output) INTEGER
*          = 0:  successful exit.
*          < 0:  if INFO = -i, the i-th argument had an illegal value.
*          > 0:  The algorithm failed to compute an eigenvalue while
*                working on the submatrix lying in rows and columns
*                INFO/(N+1) through mod(INFO,N+1).
*
*  Further Details
*  ===============
*
*  Based on contributions by
*     Jeff Rutter, Computer Science Division, University of California
*     at Berkeley, USA
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE, TWO
      PARAMETER          ( ZERO = 0.E0, ONE = 1.E0, TWO = 2.E0 )
*     ..
*     .. Local Scalars ..
      INTEGER            CURLVL, CURPRB, CURR, I, IGIVCL, IGIVNM,
     $                   IGIVPT, INDXQ, IPERM, IPRMPT, IQ, IQPTR, IWREM,
     $                   J, K, LGN, MATSIZ, MSD2, SMLSIZ, SMM1, SPM1,
     $                   SPM2, SUBMAT, SUBPBS, TLVLS
      REAL               TEMP
*     ..
*     .. External Subroutines ..
      EXTERNAL           SCOPY, SGEMM, SLACPY, SLAED1, SLAED7, SSTEQR,
     $                   XERBLA
*     ..
*     .. External Functions ..
      INTEGER            ILAENV
      EXTERNAL           ILAENV
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABSINTLOGMAX, REAL
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
*
      IF( ICOMPQ.LT.0 .OR. ICOMPQ.GT.2 ) THEN
         INFO = -1
      ELSE IF( ( ICOMPQ.EQ.1 ) .AND. ( QSIZ.LT.MAX0, N ) ) ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( LDQ.LT.MAX1, N ) ) THEN
         INFO = -7
      ELSE IF( LDQS.LT.MAX1, N ) ) THEN
         INFO = -9
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SLAED0'-INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
      SMLSIZ = ILAENV( 9'SLAED0'' '0000 )
*
*     Determine the size and placement of the submatrices, and save in
*     the leading elements of IWORK.
*
      IWORK( 1 ) = N
      SUBPBS = 1
      TLVLS = 0
   10 CONTINUE
      IF( IWORK( SUBPBS ).GT.SMLSIZ ) THEN
         DO 20 J = SUBPBS, 1-1
            IWORK( 2*J ) = ( IWORK( J )+1 ) / 2
            IWORK( 2*J-1 ) = IWORK( J ) / 2
   20    CONTINUE
         TLVLS = TLVLS + 1
         SUBPBS = 2*SUBPBS
         GO TO 10
      END IF
      DO 30 J = 2, SUBPBS
         IWORK( J ) = IWORK( J ) + IWORK( J-1 )
   30 CONTINUE
*
*     Divide the matrix into SUBPBS submatrices of size at most SMLSIZ+1
*     using rank-1 modifications (cuts).
*
      SPM1 = SUBPBS - 1
      DO 40 I = 1, SPM1
         SUBMAT = IWORK( I ) + 1
         SMM1 = SUBMAT - 1
         D( SMM1 ) = D( SMM1 ) - ABS( E( SMM1 ) )
         D( SUBMAT ) = D( SUBMAT ) - ABS( E( SMM1 ) )
   40 CONTINUE
*
      INDXQ = 4*+ 3
      IF( ICOMPQ.NE.2 ) THEN
*
*        Set up workspaces for eigenvalues only/accumulate new vectors
*        routine
*
         TEMP = LOGREAL( N ) ) / LOG( TWO )
         LGN = INT( TEMP )
         IF2**LGN.LT.N )
     $      LGN = LGN + 1
         IF2**LGN.LT.N )
     $      LGN = LGN + 1
         IPRMPT = INDXQ + N + 1
         IPERM = IPRMPT + N*LGN
         IQPTR = IPERM + N*LGN
         IGIVPT = IQPTR + N + 2
         IGIVCL = IGIVPT + N*LGN
*
         IGIVNM = 1
         IQ = IGIVNM + 2*N*LGN
         IWREM = IQ + N**2 + 1
*
*        Initialize pointers
*
         DO 50 I = 0, SUBPBS
            IWORK( IPRMPT+I ) = 1
            IWORK( IGIVPT+I ) = 1
   50    CONTINUE
         IWORK( IQPTR ) = 1
      END IF
*
*     Solve each submatrix eigenproblem at the bottom of the divide and
*     conquer tree.
*
      CURR = 0
      DO 70 I = 0, SPM1
         IF( I.EQ.0 ) THEN
            SUBMAT = 1
            MATSIZ = IWORK( 1 )
         ELSE
            SUBMAT = IWORK( I ) + 1
            MATSIZ = IWORK( I+1 ) - IWORK( I )
         END IF
         IF( ICOMPQ.EQ.2 ) THEN
            CALL SSTEQR( 'I', MATSIZ, D( SUBMAT ), E( SUBMAT ),
     $                   Q( SUBMAT, SUBMAT ), LDQ, WORK, INFO )
            IF( INFO.NE.0 )
     $         GO TO 130
         ELSE
            CALL SSTEQR( 'I', MATSIZ, D( SUBMAT ), E( SUBMAT ),
     $                   WORK( IQ-1+IWORK( IQPTR+CURR ) ), MATSIZ, WORK,
     $                   INFO )
            IF( INFO.NE.0 )
     $         GO TO 130
            IF( ICOMPQ.EQ.1 ) THEN
               CALL SGEMM( 'N''N', QSIZ, MATSIZ, MATSIZ, ONE,
     $                     Q( 1, SUBMAT ), LDQ, WORK( IQ-1+IWORK( IQPTR+
     $                     CURR ) ), MATSIZ, ZERO, QSTORE( 1, SUBMAT ),
     $                     LDQS )
            END IF
            IWORK( IQPTR+CURR+1 ) = IWORK( IQPTR+CURR ) + MATSIZ**2
            CURR = CURR + 1
         END IF
         K = 1
         DO 60 J = SUBMAT, IWORK( I+1 )
            IWORK( INDXQ+J ) = K
            K = K + 1
   60    CONTINUE
   70 CONTINUE
*
*     Successively merge eigensystems of adjacent submatrices
*     into eigensystem for the corresponding larger matrix.
*
*     while ( SUBPBS > 1 )
*
      CURLVL = 1
   80 CONTINUE
      IF( SUBPBS.GT.1 ) THEN
         SPM2 = SUBPBS - 2
         DO 90 I = 0, SPM2, 2
            IF( I.EQ.0 ) THEN
               SUBMAT = 1
               MATSIZ = IWORK( 2 )
               MSD2 = IWORK( 1 )
               CURPRB = 0
            ELSE
               SUBMAT = IWORK( I ) + 1
               MATSIZ = IWORK( I+2 ) - IWORK( I )
               MSD2 = MATSIZ / 2
               CURPRB = CURPRB + 1
            END IF
*
*     Merge lower order eigensystems (of size MSD2 and MATSIZ - MSD2)
*     into an eigensystem of size MATSIZ.
*     SLAED1 is used only for the full eigensystem of a tridiagonal
*     matrix.
*     SLAED7 handles the cases in which eigenvalues only or eigenvalues
*     and eigenvectors of a full symmetric matrix (which was reduced to
*     tridiagonal form) are desired.
*
            IF( ICOMPQ.EQ.2 ) THEN
               CALL SLAED1( MATSIZ, D( SUBMAT ), Q( SUBMAT, SUBMAT ),
     $                      LDQ, IWORK( INDXQ+SUBMAT ),
     $                      E( SUBMAT+MSD2-1 ), MSD2, WORK,
     $                      IWORK( SUBPBS+1 ), INFO )
            ELSE
               CALL SLAED7( ICOMPQ, MATSIZ, QSIZ, TLVLS, CURLVL, CURPRB,
     $                      D( SUBMAT ), QSTORE( 1, SUBMAT ), LDQS,
     $                      IWORK( INDXQ+SUBMAT ), E( SUBMAT+MSD2-1 ),
     $                      MSD2, WORK( IQ ), IWORK( IQPTR ),
     $                      IWORK( IPRMPT ), IWORK( IPERM ),
     $                      IWORK( IGIVPT ), IWORK( IGIVCL ),
     $                      WORK( IGIVNM ), WORK( IWREM ),
     $                      IWORK( SUBPBS+1 ), INFO )
            END IF
            IF( INFO.NE.0 )
     $         GO TO 130
            IWORK( I / 2+1 ) = IWORK( I+2 )
   90    CONTINUE
         SUBPBS = SUBPBS / 2
         CURLVL = CURLVL + 1
         GO TO 80
      END IF
*
*     end while
*
*     Re-merge the eigenvalues/vectors which were deflated at the final
*     merge step.
*
      IF( ICOMPQ.EQ.1 ) THEN
         DO 100 I = 1, N
            J = IWORK( INDXQ+I )
            WORK( I ) = D( J )
            CALL SCOPY( QSIZ, QSTORE( 1, J ), 1, Q( 1, I ), 1 )
  100    CONTINUE
         CALL SCOPY( N, WORK, 1, D, 1 )
      ELSE IF( ICOMPQ.EQ.2 ) THEN
         DO 110 I = 1, N
            J = IWORK( INDXQ+I )
            WORK( I ) = D( J )
            CALL SCOPY( N, Q( 1, J ), 1, WORK( N*I+1 ), 1 )
  110    CONTINUE
         CALL SCOPY( N, WORK, 1, D, 1 )
         CALL SLACPY( 'A', N, N, WORK( N+1 ), N, Q, LDQ )
      ELSE
         DO 120 I = 1, N
            J = IWORK( INDXQ+I )
            WORK( I ) = D( J )
  120    CONTINUE
         CALL SCOPY( N, WORK, 1, D, 1 )
      END IF
      GO TO 140
*
  130 CONTINUE
      INFO = SUBMAT*( N+1 ) + SUBMAT + MATSIZ - 1
*
  140 CONTINUE
      RETURN
*
*     End of SLAED0
*
      END