1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
     225
     226
     227
     228
     229
     230
     231
     232
     233
     234
     235
     236
     237
     238
     239
     240
     241
     242
     243
     244
     245
     246
     247
     248
     249
     250
     251
     252
     253
     254
     255
     256
     257
     258
     259
     260
     261
     262
     263
     264
     265
     266
     267
     268
     269
     270
     271
     272
     273
     274
     275
     276
     277
     278
     279
     280
     281
     282
     283
     284
     285
     286
     287
     288
     289
     290
     291
     292
     293
     294
     295
     296
     297
     298
     299
     300
     301
     302
     303
     304
     305
     306
     307
     308
     309
     310
     311
     312
     313
     314
     315
     316
     317
     318
     319
     320
     321
     322
     323
     324
     325
     326
     327
     328
      SUBROUTINE SLAED6( KNITER, ORGATI, RHO, D, Z, FINIT, TAU, INFO )
*
*  -- LAPACK routine (version 3.2) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     February 2007
*
*     .. Scalar Arguments ..
      LOGICAL            ORGATI
      INTEGER            INFO, KNITER
      REAL               FINIT, RHO, TAU
*     ..
*     .. Array Arguments ..
      REAL               D( 3 ), Z( 3 )
*     ..
*
*  Purpose
*  =======
*
*  SLAED6 computes the positive or negative root (closest to the origin)
*  of
*                   z(1)        z(2)        z(3)
*  f(x) =   rho + --------- + ---------- + ---------
*                  d(1)-x      d(2)-x      d(3)-x
*
*  It is assumed that
*
*        if ORGATI = .true. the root is between d(2) and d(3);
*        otherwise it is between d(1) and d(2)
*
*  This routine will be called by SLAED4 when necessary. In most cases,
*  the root sought is the smallest in magnitude, though it might not be
*  in some extremely rare situations.
*
*  Arguments
*  =========
*
*  KNITER       (input) INTEGER
*               Refer to SLAED4 for its significance.
*
*  ORGATI       (input) LOGICAL
*               If ORGATI is true, the needed root is between d(2) and
*               d(3); otherwise it is between d(1) and d(2).  See
*               SLAED4 for further details.
*
*  RHO          (input) REAL            
*               Refer to the equation f(x) above.
*
*  D            (input) REAL array, dimension (3)
*               D satisfies d(1) < d(2) < d(3).
*
*  Z            (input) REAL array, dimension (3)
*               Each of the elements in z must be positive.
*
*  FINIT        (input) REAL            
*               The value of f at 0. It is more accurate than the one
*               evaluated inside this routine (if someone wants to do
*               so).
*
*  TAU          (output) REAL            
*               The root of the equation f(x).
*
*  INFO         (output) INTEGER
*               = 0: successful exit
*               > 0: if INFO = 1, failure to converge
*
*  Further Details
*  ===============
*
*  30/06/99: Based on contributions by
*     Ren-Cang Li, Computer Science Division, University of California
*     at Berkeley, USA
*
*  10/02/03: This version has a few statements commented out for thread safety
*     (machine parameters are computed on each entry). SJH.
*
*  05/10/06: Modified from a new version of Ren-Cang Li, use
*     Gragg-Thornton-Warner cubic convergent scheme for better stability.
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            MAXIT
      PARAMETER          ( MAXIT = 40 )
      REAL               ZERO, ONE, TWO, THREE, FOUR, EIGHT
      PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0, TWO = 2.0E0,
     $                   THREE = 3.0E0, FOUR = 4.0E0, EIGHT = 8.0E0 )
*     ..
*     .. External Functions ..
      REAL               SLAMCH
      EXTERNAL           SLAMCH
*     ..
*     .. Local Arrays ..
      REAL               DSCALE( 3 ), ZSCALE( 3 )
*     ..
*     .. Local Scalars ..
      LOGICAL            SCALE
      INTEGER            I, ITER, NITER
      REAL               A, B, BASE, C, DDF, DF, EPS, ERRETM, ETA, F,
     $                   FC, SCLFAC, SCLINV, SMALL1, SMALL2, SMINV1,
     $                   SMINV2, TEMP, TEMP1, TEMP2, TEMP3, TEMP4, 
     $                   LBD, UBD
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABSINTLOGMAXMINSQRT
*     ..
*     .. Executable Statements ..
*
      INFO = 0
*
      IF( ORGATI ) THEN
         LBD = D(2)
         UBD = D(3)
      ELSE
         LBD = D(1)
         UBD = D(2)
      END IF
      IF( FINIT .LT. ZERO )THEN
         LBD = ZERO
      ELSE
         UBD = ZERO 
      END IF
*
      NITER = 1
      TAU = ZERO
      IF( KNITER.EQ.2 ) THEN
         IF( ORGATI ) THEN
            TEMP = ( D( 3 )-D( 2 ) ) / TWO
            C = RHO + Z( 1 ) / ( ( D( 1 )-D( 2 ) )-TEMP )
            A = C*( D( 2 )+D( 3 ) ) + Z( 2 ) + Z( 3 )
            B = C*D( 2 )*D( 3 ) + Z( 2 )*D( 3 ) + Z( 3 )*D( 2 )
         ELSE
            TEMP = ( D( 1 )-D( 2 ) ) / TWO
            C = RHO + Z( 3 ) / ( ( D( 3 )-D( 2 ) )-TEMP )
            A = C*( D( 1 )+D( 2 ) ) + Z( 1 ) + Z( 2 )
            B = C*D( 1 )*D( 2 ) + Z( 1 )*D( 2 ) + Z( 2 )*D( 1 )
         END IF
         TEMP = MAXABS( A ), ABS( B ), ABS( C ) )
         A = A / TEMP
         B = B / TEMP
         C = C / TEMP
         IF( C.EQ.ZERO ) THEN
            TAU = B / A
         ELSE IF( A.LE.ZERO ) THEN
            TAU = ( A-SQRTABS( A*A-FOUR*B*C ) ) ) / ( TWO*C )
         ELSE
            TAU = TWO*/ ( A+SQRTABS( A*A-FOUR*B*C ) ) )
         END IF
         IF( TAU .LT. LBD .OR. TAU .GT. UBD )
     $      TAU = ( LBD+UBD )/TWO
         IF( D(1).EQ.TAU .OR. D(2).EQ.TAU .OR. D(3).EQ.TAU ) THEN
            TAU = ZERO
         ELSE
            TEMP = FINIT + TAU*Z(1)/( D(1)*( D( 1 )-TAU ) ) +
     $                     TAU*Z(2)/( D(2)*( D( 2 )-TAU ) ) +
     $                     TAU*Z(3)/( D(3)*( D( 3 )-TAU ) )
            IF( TEMP .LE. ZERO )THEN
               LBD = TAU
            ELSE
               UBD = TAU
            END IF
            IFABS( FINIT ).LE.ABS( TEMP ) )
     $         TAU = ZERO
         END IF
      END IF
*
*     get machine parameters for possible scaling to avoid overflow
*
*     modified by Sven: parameters SMALL1, SMINV1, SMALL2,
*     SMINV2, EPS are not SAVEd anymore between one call to the
*     others but recomputed at each call
*
      EPS = SLAMCH( 'Epsilon' )
      BASE = SLAMCH( 'Base' )
      SMALL1 = BASE**INTLOG( SLAMCH( 'SafMin' ) ) / LOG( BASE ) /
     $         THREE ) )
      SMINV1 = ONE / SMALL1
      SMALL2 = SMALL1*SMALL1
      SMINV2 = SMINV1*SMINV1
*
*     Determine if scaling of inputs necessary to avoid overflow
*     when computing 1/TEMP**3
*
      IF( ORGATI ) THEN
         TEMP = MINABS( D( 2 )-TAU ), ABS( D( 3 )-TAU ) )
      ELSE
         TEMP = MINABS( D( 1 )-TAU ), ABS( D( 2 )-TAU ) )
      END IF
      SCALE = .FALSE.
      IF( TEMP.LE.SMALL1 ) THEN
         SCALE = .TRUE.
         IF( TEMP.LE.SMALL2 ) THEN
*
*        Scale up by power of radix nearest 1/SAFMIN**(2/3)
*
            SCLFAC = SMINV2
            SCLINV = SMALL2
         ELSE
*
*        Scale up by power of radix nearest 1/SAFMIN**(1/3)
*
            SCLFAC = SMINV1
            SCLINV = SMALL1
         END IF
*
*        Scaling up safe because D, Z, TAU scaled elsewhere to be O(1)
*
         DO 10 I = 13
            DSCALE( I ) = D( I )*SCLFAC
            ZSCALE( I ) = Z( I )*SCLFAC
   10    CONTINUE
         TAU = TAU*SCLFAC
         LBD = LBD*SCLFAC
         UBD = UBD*SCLFAC
      ELSE
*
*        Copy D and Z to DSCALE and ZSCALE
*
         DO 20 I = 13
            DSCALE( I ) = D( I )
            ZSCALE( I ) = Z( I )
   20    CONTINUE
      END IF
*
      FC = ZERO
      DF = ZERO
      DDF = ZERO
      DO 30 I = 13
         TEMP = ONE / ( DSCALE( I )-TAU )
         TEMP1 = ZSCALE( I )*TEMP
         TEMP2 = TEMP1*TEMP
         TEMP3 = TEMP2*TEMP
         FC = FC + TEMP1 / DSCALE( I )
         DF = DF + TEMP2
         DDF = DDF + TEMP3
   30 CONTINUE
      F = FINIT + TAU*FC
*
      IFABS( F ).LE.ZERO )
     $   GO TO 60
      IF( F .LE. ZERO )THEN
         LBD = TAU
      ELSE
         UBD = TAU
      END IF
*
*        Iteration begins -- Use Gragg-Thornton-Warner cubic convergent
*                            scheme
*
*     It is not hard to see that
*
*           1) Iterations will go up monotonically
*              if FINIT < 0;
*
*           2) Iterations will go down monotonically
*              if FINIT > 0.
*
      ITER = NITER + 1
*
      DO 50 NITER = ITER, MAXIT
*
         IF( ORGATI ) THEN
            TEMP1 = DSCALE( 2 ) - TAU
            TEMP2 = DSCALE( 3 ) - TAU
         ELSE
            TEMP1 = DSCALE( 1 ) - TAU
            TEMP2 = DSCALE( 2 ) - TAU
         END IF
         A = ( TEMP1+TEMP2 )*- TEMP1*TEMP2*DF
         B = TEMP1*TEMP2*F
         C = F - ( TEMP1+TEMP2 )*DF + TEMP1*TEMP2*DDF
         TEMP = MAXABS( A ), ABS( B ), ABS( C ) )
         A = A / TEMP
         B = B / TEMP
         C = C / TEMP
         IF( C.EQ.ZERO ) THEN
            ETA = B / A
         ELSE IF( A.LE.ZERO ) THEN
            ETA = ( A-SQRTABS( A*A-FOUR*B*C ) ) ) / ( TWO*C )
         ELSE
            ETA = TWO*/ ( A+SQRTABS( A*A-FOUR*B*C ) ) )
         END IF
         IF( F*ETA.GE.ZERO ) THEN
            ETA = -/ DF
         END IF
*
         TAU = TAU + ETA
         IF( TAU .LT. LBD .OR. TAU .GT. UBD )
     $      TAU = ( LBD + UBD )/TWO 
*
         FC = ZERO
         ERRETM = ZERO
         DF = ZERO
         DDF = ZERO
         DO 40 I = 13
            TEMP = ONE / ( DSCALE( I )-TAU )
            TEMP1 = ZSCALE( I )*TEMP
            TEMP2 = TEMP1*TEMP
            TEMP3 = TEMP2*TEMP
            TEMP4 = TEMP1 / DSCALE( I )
            FC = FC + TEMP4
            ERRETM = ERRETM + ABS( TEMP4 )
            DF = DF + TEMP2
            DDF = DDF + TEMP3
   40    CONTINUE
         F = FINIT + TAU*FC
         ERRETM = EIGHT*ABS( FINIT )+ABS( TAU )*ERRETM ) +
     $            ABS( TAU )*DF
         IFABS( F ).LE.EPS*ERRETM )
     $      GO TO 60
         IF( F .LE. ZERO )THEN
            LBD = TAU
         ELSE
            UBD = TAU
         END IF
   50 CONTINUE
      INFO = 1
   60 CONTINUE
*
*     Undo scaling
*
      IFSCALE )
     $   TAU = TAU*SCLINV
      RETURN
*
*     End of SLAED6
*
      END