1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
      SUBROUTINE SLAED9( K, KSTART, KSTOP, N, D, Q, LDQ, RHO, DLAMDA, W,
     $                   S, LDS, INFO )
*
*  -- LAPACK routine (version 3.2) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2006
*
*     .. Scalar Arguments ..
      INTEGER            INFO, K, KSTART, KSTOP, LDQ, LDS, N
      REAL               RHO
*     ..
*     .. Array Arguments ..
      REAL               D( * ), DLAMDA( * ), Q( LDQ, * ), S( LDS, * ),
     $                   W( * )
*     ..
*
*  Purpose
*  =======
*
*  SLAED9 finds the roots of the secular equation, as defined by the
*  values in D, Z, and RHO, between KSTART and KSTOP.  It makes the
*  appropriate calls to SLAED4 and then stores the new matrix of
*  eigenvectors for use in calculating the next level of Z vectors.
*
*  Arguments
*  =========
*
*  K       (input) INTEGER
*          The number of terms in the rational function to be solved by
*          SLAED4.  K >= 0.
*
*  KSTART  (input) INTEGER
*  KSTOP   (input) INTEGER
*          The updated eigenvalues Lambda(I), KSTART <= I <= KSTOP
*          are to be computed.  1 <= KSTART <= KSTOP <= K.
*
*  N       (input) INTEGER
*          The number of rows and columns in the Q matrix.
*          N >= K (delation may result in N > K).
*
*  D       (output) REAL array, dimension (N)
*          D(I) contains the updated eigenvalues
*          for KSTART <= I <= KSTOP.
*
*  Q       (workspace) REAL array, dimension (LDQ,N)
*
*  LDQ     (input) INTEGER
*          The leading dimension of the array Q.  LDQ >= max( 1, N ).
*
*  RHO     (input) REAL
*          The value of the parameter in the rank one update equation.
*          RHO >= 0 required.
*
*  DLAMDA  (input) REAL array, dimension (K)
*          The first K elements of this array contain the old roots
*          of the deflated updating problem.  These are the poles
*          of the secular equation.
*
*  W       (input) REAL array, dimension (K)
*          The first K elements of this array contain the components
*          of the deflation-adjusted updating vector.
*
*  S       (output) REAL array, dimension (LDS, K)
*          Will contain the eigenvectors of the repaired matrix which
*          will be stored for subsequent Z vector calculation and
*          multiplied by the previously accumulated eigenvectors
*          to update the system.
*
*  LDS     (input) INTEGER
*          The leading dimension of S.  LDS >= max( 1, K ).
*
*  INFO    (output) INTEGER
*          = 0:  successful exit.
*          < 0:  if INFO = -i, the i-th argument had an illegal value.
*          > 0:  if INFO = 1, an eigenvalue did not converge
*
*  Further Details
*  ===============
*
*  Based on contributions by
*     Jeff Rutter, Computer Science Division, University of California
*     at Berkeley, USA
*
*  =====================================================================
*
*     .. Local Scalars ..
      INTEGER            I, J
      REAL               TEMP
*     ..
*     .. External Functions ..
      REAL               SLAMC3, SNRM2
      EXTERNAL           SLAMC3, SNRM2
*     ..
*     .. External Subroutines ..
      EXTERNAL           SCOPY, SLAED4, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAXSIGNSQRT
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
*
      IF( K.LT.0 ) THEN
         INFO = -1
      ELSE IF( KSTART.LT.1 .OR. KSTART.GT.MAX1, K ) ) THEN
         INFO = -2
      ELSE IFMAX1, KSTOP ).LT.KSTART .OR. KSTOP.GT.MAX1, K ) )
     $          THEN
         INFO = -3
      ELSE IF( N.LT.K ) THEN
         INFO = -4
      ELSE IF( LDQ.LT.MAX1, K ) ) THEN
         INFO = -7
      ELSE IF( LDS.LT.MAX1, K ) ) THEN
         INFO = -12
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SLAED9'-INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( K.EQ.0 )
     $   RETURN
*
*     Modify values DLAMDA(i) to make sure all DLAMDA(i)-DLAMDA(j) can
*     be computed with high relative accuracy (barring over/underflow).
*     This is a problem on machines without a guard digit in
*     add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2).
*     The following code replaces DLAMDA(I) by 2*DLAMDA(I)-DLAMDA(I),
*     which on any of these machines zeros out the bottommost
*     bit of DLAMDA(I) if it is 1; this makes the subsequent
*     subtractions DLAMDA(I)-DLAMDA(J) unproblematic when cancellation
*     occurs. On binary machines with a guard digit (almost all
*     machines) it does not change DLAMDA(I) at all. On hexadecimal
*     and decimal machines with a guard digit, it slightly
*     changes the bottommost bits of DLAMDA(I). It does not account
*     for hexadecimal or decimal machines without guard digits
*     (we know of none). We use a subroutine call to compute
*     2*DLAMBDA(I) to prevent optimizing compilers from eliminating
*     this code.
*
      DO 10 I = 1, N
         DLAMDA( I ) = SLAMC3( DLAMDA( I ), DLAMDA( I ) ) - DLAMDA( I )
   10 CONTINUE
*
      DO 20 J = KSTART, KSTOP
         CALL SLAED4( K, J, DLAMDA, W, Q( 1, J ), RHO, D( J ), INFO )
*
*        If the zero finder fails, the computation is terminated.
*
         IF( INFO.NE.0 )
     $      GO TO 120
   20 CONTINUE
*
      IF( K.EQ.1 .OR. K.EQ.2 ) THEN
         DO 40 I = 1, K
            DO 30 J = 1, K
               S( J, I ) = Q( J, I )
   30       CONTINUE
   40    CONTINUE
         GO TO 120
      END IF
*
*     Compute updated W.
*
      CALL SCOPY( K, W, 1, S, 1 )
*
*     Initialize W(I) = Q(I,I)
*
      CALL SCOPY( K, Q, LDQ+1, W, 1 )
      DO 70 J = 1, K
         DO 50 I = 1, J - 1
            W( I ) = W( I )*( Q( I, J ) / ( DLAMDA( I )-DLAMDA( J ) ) )
   50    CONTINUE
         DO 60 I = J + 1, K
            W( I ) = W( I )*( Q( I, J ) / ( DLAMDA( I )-DLAMDA( J ) ) )
   60    CONTINUE
   70 CONTINUE
      DO 80 I = 1, K
         W( I ) = SIGNSQRT-W( I ) ), S( I, 1 ) )
   80 CONTINUE
*
*     Compute eigenvectors of the modified rank-1 modification.
*
      DO 110 J = 1, K
         DO 90 I = 1, K
            Q( I, J ) = W( I ) / Q( I, J )
   90    CONTINUE
         TEMP = SNRM2( K, Q( 1, J ), 1 )
         DO 100 I = 1, K
            S( I, J ) = Q( I, J ) / TEMP
  100    CONTINUE
  110 CONTINUE
*
  120 CONTINUE
      RETURN
*
*     End of SLAED9
*
      END