1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
     225
     226
     227
     228
     229
     230
     231
     232
     233
     234
     235
     236
     237
     238
     239
     240
     241
     242
     243
     244
     245
     246
     247
     248
     249
     250
     251
     252
     253
     254
     255
     256
     257
     258
     259
     260
     261
     262
     263
     264
     265
     266
     267
     268
     269
     270
     271
     272
     273
     274
     275
     276
     277
     278
     279
     280
     281
     282
     283
     284
     285
     286
     287
     288
     289
     290
     291
     292
     293
     294
     295
     296
     297
     298
     299
     300
     301
     302
     303
     304
     305
     306
     307
     308
     309
     310
     311
     312
     313
     314
     315
     316
     317
     318
     319
     320
     321
     322
     323
     324
     325
     326
     327
     328
     329
     330
     331
     332
     333
     334
     335
     336
     337
     338
     339
     340
     341
     342
     343
     344
     345
     346
     347
     348
     349
     350
     351
     352
     353
     354
     355
     356
     357
     358
     359
     360
     361
     362
     363
     364
     365
     366
     367
     368
     369
     370
     371
     372
     373
     374
     375
     376
     377
     378
     379
     380
     381
     382
     383
     384
     385
     386
     387
     388
     389
     390
     391
     392
     393
     394
     395
     396
     397
     398
     399
     400
     401
     402
     403
     404
     405
     406
     407
     408
     409
     410
     411
     412
     413
     414
     415
     416
     417
     418
     419
     420
     421
     422
     423
     424
     425
     426
     427
     428
     429
     430
     431
     432
     433
     434
     435
     436
     437
     438
     439
     440
     441
     442
     443
     444
     445
     446
     447
     448
     449
     450
     451
     452
     453
     454
     455
     456
     457
     458
     459
     460
     461
     462
     463
     464
     465
     466
     467
     468
     469
     470
     471
     472
     473
     474
     475
     476
     477
     478
     479
     480
     481
     482
     483
     484
     485
     486
     487
     488
     489
     490
     491
     492
     493
     494
     495
     496
     497
     498
     499
     500
     501
     502
     503
     504
     505
     506
     507
     508
      SUBROUTINE SLALN2( LTRANS, NA, NW, SMIN, CA, A, LDA, D1, D2, B,
     $                   LDB, WR, WI, X, LDX, SCALE, XNORM, INFO )
*
*  -- LAPACK auxiliary routine (version 3.2) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2006
*
*     .. Scalar Arguments ..
      LOGICAL            LTRANS
      INTEGER            INFO, LDA, LDB, LDX, NA, NW
      REAL               CA, D1, D2, SCALE, SMIN, WI, WR, XNORM
*     ..
*     .. Array Arguments ..
      REAL               A( LDA, * ), B( LDB, * ), X( LDX, * )
*     ..
*
*  Purpose
*  =======
*
*  SLALN2 solves a system of the form  (ca A - w D ) X = s B
*  or (ca A**T - w D) X = s B   with possible scaling ("s") and
*  perturbation of A.  (A**T means A-transpose.)
*
*  A is an NA x NA real matrix, ca is a real scalar, D is an NA x NA
*  real diagonal matrix, w is a real or complex value, and X and B are
*  NA x 1 matrices -- real if w is real, complex if w is complex.  NA
*  may be 1 or 2.
*
*  If w is complex, X and B are represented as NA x 2 matrices,
*  the first column of each being the real part and the second
*  being the imaginary part.
*
*  "s" is a scaling factor (.LE. 1), computed by SLALN2, which is
*  so chosen that X can be computed without overflow.  X is further
*  scaled if necessary to assure that norm(ca A - w D)*norm(X) is less
*  than overflow.
*
*  If both singular values of (ca A - w D) are less than SMIN,
*  SMIN*identity will be used instead of (ca A - w D).  If only one
*  singular value is less than SMIN, one element of (ca A - w D) will be
*  perturbed enough to make the smallest singular value roughly SMIN.
*  If both singular values are at least SMIN, (ca A - w D) will not be
*  perturbed.  In any case, the perturbation will be at most some small
*  multiple of max( SMIN, ulp*norm(ca A - w D) ).  The singular values
*  are computed by infinity-norm approximations, and thus will only be
*  correct to a factor of 2 or so.
*
*  Note: all input quantities are assumed to be smaller than overflow
*  by a reasonable factor.  (See BIGNUM.)
*
*  Arguments
*  ==========
*
*  LTRANS  (input) LOGICAL
*          =.TRUE.:  A-transpose will be used.
*          =.FALSE.: A will be used (not transposed.)
*
*  NA      (input) INTEGER
*          The size of the matrix A.  It may (only) be 1 or 2.
*
*  NW      (input) INTEGER
*          1 if "w" is real, 2 if "w" is complex.  It may only be 1
*          or 2.
*
*  SMIN    (input) REAL
*          The desired lower bound on the singular values of A.  This
*          should be a safe distance away from underflow or overflow,
*          say, between (underflow/machine precision) and  (machine
*          precision * overflow ).  (See BIGNUM and ULP.)
*
*  CA      (input) REAL
*          The coefficient c, which A is multiplied by.
*
*  A       (input) REAL array, dimension (LDA,NA)
*          The NA x NA matrix A.
*
*  LDA     (input) INTEGER
*          The leading dimension of A.  It must be at least NA.
*
*  D1      (input) REAL
*          The 1,1 element in the diagonal matrix D.
*
*  D2      (input) REAL
*          The 2,2 element in the diagonal matrix D.  Not used if NW=1.
*
*  B       (input) REAL array, dimension (LDB,NW)
*          The NA x NW matrix B (right-hand side).  If NW=2 ("w" is
*          complex), column 1 contains the real part of B and column 2
*          contains the imaginary part.
*
*  LDB     (input) INTEGER
*          The leading dimension of B.  It must be at least NA.
*
*  WR      (input) REAL
*          The real part of the scalar "w".
*
*  WI      (input) REAL
*          The imaginary part of the scalar "w".  Not used if NW=1.
*
*  X       (output) REAL array, dimension (LDX,NW)
*          The NA x NW matrix X (unknowns), as computed by SLALN2.
*          If NW=2 ("w" is complex), on exit, column 1 will contain
*          the real part of X and column 2 will contain the imaginary
*          part.
*
*  LDX     (input) INTEGER
*          The leading dimension of X.  It must be at least NA.
*
*  SCALE   (output) REAL
*          The scale factor that B must be multiplied by to insure
*          that overflow does not occur when computing X.  Thus,
*          (ca A - w D) X  will be SCALE*B, not B (ignoring
*          perturbations of A.)  It will be at most 1.
*
*  XNORM   (output) REAL
*          The infinity-norm of X, when X is regarded as an NA x NW
*          real matrix.
*
*  INFO    (output) INTEGER
*          An error flag.  It will be set to zero if no error occurs,
*          a negative number if an argument is in error, or a positive
*          number if  ca A - w D  had to be perturbed.
*          The possible values are:
*          = 0: No error occurred, and (ca A - w D) did not have to be
*                 perturbed.
*          = 1: (ca A - w D) had to be perturbed to make its smallest
*               (or only) singular value greater than SMIN.
*          NOTE: In the interests of speed, this routine does not
*                check the inputs for errors.
*
* =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0 )
      REAL               TWO
      PARAMETER          ( TWO = 2.0E0 )
*     ..
*     .. Local Scalars ..
      INTEGER            ICMAX, J
      REAL               BBND, BI1, BI2, BIGNUM, BNORM, BR1, BR2, CI21,
     $                   CI22, CMAX, CNORM, CR21, CR22, CSI, CSR, LI21,
     $                   LR21, SMINI, SMLNUM, TEMP, U22ABS, UI11, UI11R,
     $                   UI12, UI12S, UI22, UR11, UR11R, UR12, UR12S,
     $                   UR22, XI1, XI2, XR1, XR2
*     ..
*     .. Local Arrays ..
      LOGICAL            CSWAP( 4 ), RSWAP( 4 )
      INTEGER            IPIVOT( 44 )
      REAL               CI( 22 ), CIV( 4 ), CR( 22 ), CRV( 4 )
*     ..
*     .. External Functions ..
      REAL               SLAMCH
      EXTERNAL           SLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           SLADIV
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABSMAX
*     ..
*     .. Equivalences ..
      EQUIVALENCE        ( CI( 11 ), CIV( 1 ) ),
     $                   ( CR( 11 ), CRV( 1 ) )
*     ..
*     .. Data statements ..
      DATA               CSWAP / .FALSE..FALSE..TRUE..TRUE. /
      DATA               RSWAP / .FALSE..TRUE..FALSE..TRUE. /
      DATA               IPIVOT / 1234214334124,
     $                   321 /
*     ..
*     .. Executable Statements ..
*
*     Compute BIGNUM
*
      SMLNUM = TWO*SLAMCH( 'Safe minimum' )
      BIGNUM = ONE / SMLNUM
      SMINI = MAX( SMIN, SMLNUM )
*
*     Don't check for input errors
*
      INFO = 0
*
*     Standard Initializations
*
      SCALE = ONE
*
      IF( NA.EQ.1 ) THEN
*
*        1 x 1  (i.e., scalar) system   C X = B
*
         IF( NW.EQ.1 ) THEN
*
*           Real 1x1 system.
*
*           C = ca A - w D
*
            CSR = CA*A( 11 ) - WR*D1
            CNORM = ABS( CSR )
*
*           If | C | < SMINI, use C = SMINI
*
            IF( CNORM.LT.SMINI ) THEN
               CSR = SMINI
               CNORM = SMINI
               INFO = 1
            END IF
*
*           Check scaling for  X = B / C
*
            BNORM = ABS( B( 11 ) )
            IF( CNORM.LT.ONE .AND. BNORM.GT.ONE ) THEN
               IF( BNORM.GT.BIGNUM*CNORM )
     $            SCALE = ONE / BNORM
            END IF
*
*           Compute X
*
            X( 11 ) = ( B( 11 )*SCALE ) / CSR
            XNORM = ABS( X( 11 ) )
         ELSE
*
*           Complex 1x1 system (w is complex)
*
*           C = ca A - w D
*
            CSR = CA*A( 11 ) - WR*D1
            CSI = -WI*D1
            CNORM = ABS( CSR ) + ABS( CSI )
*
*           If | C | < SMINI, use C = SMINI
*
            IF( CNORM.LT.SMINI ) THEN
               CSR = SMINI
               CSI = ZERO
               CNORM = SMINI
               INFO = 1
            END IF
*
*           Check scaling for  X = B / C
*
            BNORM = ABS( B( 11 ) ) + ABS( B( 12 ) )
            IF( CNORM.LT.ONE .AND. BNORM.GT.ONE ) THEN
               IF( BNORM.GT.BIGNUM*CNORM )
     $            SCALE = ONE / BNORM
            END IF
*
*           Compute X
*
            CALL SLADIV( SCALE*B( 11 ), SCALE*B( 12 ), CSR, CSI,
     $                   X( 11 ), X( 12 ) )
            XNORM = ABS( X( 11 ) ) + ABS( X( 12 ) )
         END IF
*
      ELSE
*
*        2x2 System
*
*        Compute the real part of  C = ca A - w D  (or  ca A**T - w D )
*
         CR( 11 ) = CA*A( 11 ) - WR*D1
         CR( 22 ) = CA*A( 22 ) - WR*D2
         IF( LTRANS ) THEN
            CR( 12 ) = CA*A( 21 )
            CR( 21 ) = CA*A( 12 )
         ELSE
            CR( 21 ) = CA*A( 21 )
            CR( 12 ) = CA*A( 12 )
         END IF
*
         IF( NW.EQ.1 ) THEN
*
*           Real 2x2 system  (w is real)
*
*           Find the largest element in C
*
            CMAX = ZERO
            ICMAX = 0
*
            DO 10 J = 14
               IFABS( CRV( J ) ).GT.CMAX ) THEN
                  CMAX = ABS( CRV( J ) )
                  ICMAX = J
               END IF
   10       CONTINUE
*
*           If norm(C) < SMINI, use SMINI*identity.
*
            IF( CMAX.LT.SMINI ) THEN
               BNORM = MAXABS( B( 11 ) ), ABS( B( 21 ) ) )
               IF( SMINI.LT.ONE .AND. BNORM.GT.ONE ) THEN
                  IF( BNORM.GT.BIGNUM*SMINI )
     $               SCALE = ONE / BNORM
               END IF
               TEMP = SCALE / SMINI
               X( 11 ) = TEMP*B( 11 )
               X( 21 ) = TEMP*B( 21 )
               XNORM = TEMP*BNORM
               INFO = 1
               RETURN
            END IF
*
*           Gaussian elimination with complete pivoting.
*
            UR11 = CRV( ICMAX )
            CR21 = CRV( IPIVOT( 2, ICMAX ) )
            UR12 = CRV( IPIVOT( 3, ICMAX ) )
            CR22 = CRV( IPIVOT( 4, ICMAX ) )
            UR11R = ONE / UR11
            LR21 = UR11R*CR21
            UR22 = CR22 - UR12*LR21
*
*           If smaller pivot < SMINI, use SMINI
*
            IFABS( UR22 ).LT.SMINI ) THEN
               UR22 = SMINI
               INFO = 1
            END IF
            IF( RSWAP( ICMAX ) ) THEN
               BR1 = B( 21 )
               BR2 = B( 11 )
            ELSE
               BR1 = B( 11 )
               BR2 = B( 21 )
            END IF
            BR2 = BR2 - LR21*BR1
            BBND = MAXABS( BR1*( UR22*UR11R ) ), ABS( BR2 ) )
            IF( BBND.GT.ONE .AND. ABS( UR22 ).LT.ONE ) THEN
               IF( BBND.GE.BIGNUM*ABS( UR22 ) )
     $            SCALE = ONE / BBND
            END IF
*
            XR2 = ( BR2*SCALE ) / UR22
            XR1 = ( SCALE*BR1 )*UR11R - XR2*( UR11R*UR12 )
            IF( CSWAP( ICMAX ) ) THEN
               X( 11 ) = XR2
               X( 21 ) = XR1
            ELSE
               X( 11 ) = XR1
               X( 21 ) = XR2
            END IF
            XNORM = MAXABS( XR1 ), ABS( XR2 ) )
*
*           Further scaling if  norm(A) norm(X) > overflow
*
            IF( XNORM.GT.ONE .AND. CMAX.GT.ONE ) THEN
               IF( XNORM.GT.BIGNUM / CMAX ) THEN
                  TEMP = CMAX / BIGNUM
                  X( 11 ) = TEMP*X( 11 )
                  X( 21 ) = TEMP*X( 21 )
                  XNORM = TEMP*XNORM
                  SCALE = TEMP*SCALE
               END IF
            END IF
         ELSE
*
*           Complex 2x2 system  (w is complex)
*
*           Find the largest element in C
*
            CI( 11 ) = -WI*D1
            CI( 21 ) = ZERO
            CI( 12 ) = ZERO
            CI( 22 ) = -WI*D2
            CMAX = ZERO
            ICMAX = 0
*
            DO 20 J = 14
               IFABS( CRV( J ) )+ABS( CIV( J ) ).GT.CMAX ) THEN
                  CMAX = ABS( CRV( J ) ) + ABS( CIV( J ) )
                  ICMAX = J
               END IF
   20       CONTINUE
*
*           If norm(C) < SMINI, use SMINI*identity.
*
            IF( CMAX.LT.SMINI ) THEN
               BNORM = MAXABS( B( 11 ) )+ABS( B( 12 ) ),
     $                 ABS( B( 21 ) )+ABS( B( 22 ) ) )
               IF( SMINI.LT.ONE .AND. BNORM.GT.ONE ) THEN
                  IF( BNORM.GT.BIGNUM*SMINI )
     $               SCALE = ONE / BNORM
               END IF
               TEMP = SCALE / SMINI
               X( 11 ) = TEMP*B( 11 )
               X( 21 ) = TEMP*B( 21 )
               X( 12 ) = TEMP*B( 12 )
               X( 22 ) = TEMP*B( 22 )
               XNORM = TEMP*BNORM
               INFO = 1
               RETURN
            END IF
*
*           Gaussian elimination with complete pivoting.
*
            UR11 = CRV( ICMAX )
            UI11 = CIV( ICMAX )
            CR21 = CRV( IPIVOT( 2, ICMAX ) )
            CI21 = CIV( IPIVOT( 2, ICMAX ) )
            UR12 = CRV( IPIVOT( 3, ICMAX ) )
            UI12 = CIV( IPIVOT( 3, ICMAX ) )
            CR22 = CRV( IPIVOT( 4, ICMAX ) )
            CI22 = CIV( IPIVOT( 4, ICMAX ) )
            IF( ICMAX.EQ.1 .OR. ICMAX.EQ.4 ) THEN
*
*              Code when off-diagonals of pivoted C are real
*
               IFABS( UR11 ).GT.ABS( UI11 ) ) THEN
                  TEMP = UI11 / UR11
                  UR11R = ONE / ( UR11*( ONE+TEMP**2 ) )
                  UI11R = -TEMP*UR11R
               ELSE
                  TEMP = UR11 / UI11
                  UI11R = -ONE / ( UI11*( ONE+TEMP**2 ) )
                  UR11R = -TEMP*UI11R
               END IF
               LR21 = CR21*UR11R
               LI21 = CR21*UI11R
               UR12S = UR12*UR11R
               UI12S = UR12*UI11R
               UR22 = CR22 - UR12*LR21
               UI22 = CI22 - UR12*LI21
            ELSE
*
*              Code when diagonals of pivoted C are real
*
               UR11R = ONE / UR11
               UI11R = ZERO
               LR21 = CR21*UR11R
               LI21 = CI21*UR11R
               UR12S = UR12*UR11R
               UI12S = UI12*UR11R
               UR22 = CR22 - UR12*LR21 + UI12*LI21
               UI22 = -UR12*LI21 - UI12*LR21
            END IF
            U22ABS = ABS( UR22 ) + ABS( UI22 )
*
*           If smaller pivot < SMINI, use SMINI
*
            IF( U22ABS.LT.SMINI ) THEN
               UR22 = SMINI
               UI22 = ZERO
               INFO = 1
            END IF
            IF( RSWAP( ICMAX ) ) THEN
               BR2 = B( 11 )
               BR1 = B( 21 )
               BI2 = B( 12 )
               BI1 = B( 22 )
            ELSE
               BR1 = B( 11 )
               BR2 = B( 21 )
               BI1 = B( 12 )
               BI2 = B( 22 )
            END IF
            BR2 = BR2 - LR21*BR1 + LI21*BI1
            BI2 = BI2 - LI21*BR1 - LR21*BI1
            BBND = MAX( ( ABS( BR1 )+ABS( BI1 ) )*
     $             ( U22ABS*ABS( UR11R )+ABS( UI11R ) ) ),
     $             ABS( BR2 )+ABS( BI2 ) )
            IF( BBND.GT.ONE .AND. U22ABS.LT.ONE ) THEN
               IF( BBND.GE.BIGNUM*U22ABS ) THEN
                  SCALE = ONE / BBND
                  BR1 = SCALE*BR1
                  BI1 = SCALE*BI1
                  BR2 = SCALE*BR2
                  BI2 = SCALE*BI2
               END IF
            END IF
*
            CALL SLADIV( BR2, BI2, UR22, UI22, XR2, XI2 )
            XR1 = UR11R*BR1 - UI11R*BI1 - UR12S*XR2 + UI12S*XI2
            XI1 = UI11R*BR1 + UR11R*BI1 - UI12S*XR2 - UR12S*XI2
            IF( CSWAP( ICMAX ) ) THEN
               X( 11 ) = XR2
               X( 21 ) = XR1
               X( 12 ) = XI2
               X( 22 ) = XI1
            ELSE
               X( 11 ) = XR1
               X( 21 ) = XR2
               X( 12 ) = XI1
               X( 22 ) = XI2
            END IF
            XNORM = MAXABS( XR1 )+ABS( XI1 ), ABS( XR2 )+ABS( XI2 ) )
*
*           Further scaling if  norm(A) norm(X) > overflow
*
            IF( XNORM.GT.ONE .AND. CMAX.GT.ONE ) THEN
               IF( XNORM.GT.BIGNUM / CMAX ) THEN
                  TEMP = CMAX / BIGNUM
                  X( 11 ) = TEMP*X( 11 )
                  X( 21 ) = TEMP*X( 21 )
                  X( 12 ) = TEMP*X( 12 )
                  X( 22 ) = TEMP*X( 22 )
                  XNORM = TEMP*XNORM
                  SCALE = TEMP*SCALE
               END IF
            END IF
         END IF
      END IF
*
      RETURN
*
*     End of SLALN2
*
      END