1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
      SUBROUTINE SLANV2( A, B, C, D, RT1R, RT1I, RT2R, RT2I, CS, SN )
*
*  -- LAPACK auxiliary routine (version 3.2.2) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     June 2010
*
*     .. Scalar Arguments ..
      REAL               A, B, C, CS, D, RT1I, RT1R, RT2I, RT2R, SN
*     ..
*
*  Purpose
*  =======
*
*  SLANV2 computes the Schur factorization of a real 2-by-2 nonsymmetric
*  matrix in standard form:
*
*       [ A  B ] = [ CS -SN ] [ AA  BB ] [ CS  SN ]
*       [ C  D ]   [ SN  CS ] [ CC  DD ] [-SN  CS ]
*
*  where either
*  1) CC = 0 so that AA and DD are real eigenvalues of the matrix, or
*  2) AA = DD and BB*CC < 0, so that AA + or - sqrt(BB*CC) are complex
*  conjugate eigenvalues.
*
*  Arguments
*  =========
*
*  A       (input/output) REAL            
*  B       (input/output) REAL            
*  C       (input/output) REAL            
*  D       (input/output) REAL            
*          On entry, the elements of the input matrix.
*          On exit, they are overwritten by the elements of the
*          standardised Schur form.
*
*  RT1R    (output) REAL 
*  RT1I    (output) REAL            
*  RT2R    (output) REAL            
*  RT2I    (output) REAL            
*          The real and imaginary parts of the eigenvalues. If the
*          eigenvalues are a complex conjugate pair, RT1I > 0.
*
*  CS      (output) REAL            
*  SN      (output) REAL            
*          Parameters of the rotation matrix.
*
*  Further Details
*  ===============
*
*  Modified by V. Sima, Research Institute for Informatics, Bucharest,
*  Romania, to reduce the risk of cancellation errors,
*  when computing real eigenvalues, and to ensure, if possible, that
*  abs(RT1R) >= abs(RT2R).
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, HALF, ONE
      PARAMETER          ( ZERO = 0.0E+0, HALF = 0.5E+0, ONE = 1.0E+0 )
      REAL               MULTPL
      PARAMETER          ( MULTPL = 4.0E+0 )
*     ..
*     .. Local Scalars ..
      REAL               AA, BB, BCMAX, BCMIS, CC, CS1, DD, EPS, P, SAB,
     $                   SAC, SCALE, SIGMA, SN1, TAU, TEMP, Z
*     ..
*     .. External Functions ..
      REAL               SLAMCH, SLAPY2
      EXTERNAL           SLAMCH, SLAPY2
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABSMAXMINSIGNSQRT
*     ..
*     .. Executable Statements ..
*
      EPS = SLAMCH( 'P' )
      IF( C.EQ.ZERO ) THEN
         CS = ONE
         SN = ZERO
         GO TO 10
*
      ELSE IF( B.EQ.ZERO ) THEN
*
*        Swap rows and columns
*
         CS = ZERO
         SN = ONE
         TEMP = D
         D = A
         A = TEMP
         B = -C
         C = ZERO
         GO TO 10
      ELSE IF( (A-D).EQ.ZERO .AND. SIGN( ONE, B ).NE.
     $   SIGN( ONE, C ) ) THEN
         CS = ONE
         SN = ZERO
         GO TO 10
      ELSE
*
         TEMP = A - D
         P = HALF*TEMP
         BCMAX = MAXABS( B ), ABS( C ) )
         BCMIS = MINABS( B ), ABS( C ) )*SIGN( ONE, B )*SIGN( ONE, C )
         SCALE = MAXABS( P ), BCMAX )
         Z = ( P / SCALE )*+ ( BCMAX / SCALE )*BCMIS
*
*        If Z is of the order of the machine accuracy, postpone the
*        decision on the nature of eigenvalues
*
         IF( Z.GE.MULTPL*EPS ) THEN
*
*           Real eigenvalues. Compute A and D.
*
            Z = P + SIGNSQRTSCALE )*SQRT( Z ), P )
            A = D + Z
            D = D - ( BCMAX / Z )*BCMIS
*
*           Compute B and the rotation matrix
*
            TAU = SLAPY2( C, Z )
            CS = Z / TAU
            SN = C / TAU
            B = B - C
            C = ZERO
         ELSE
*
*           Complex eigenvalues, or real (almost) equal eigenvalues.
*           Make diagonal elements equal.
*
            SIGMA = B + C
            TAU = SLAPY2( SIGMA, TEMP )
            CS = SQRT( HALF*( ONE+ABS( SIGMA ) / TAU ) )
            SN = -( P / ( TAU*CS ) )*SIGN( ONE, SIGMA )
*
*           Compute [ AA  BB ] = [ A  B ] [ CS -SN ]
*                   [ CC  DD ]   [ C  D ] [ SN  CS ]
*
            AA = A*CS + B*SN
            BB = -A*SN + B*CS
            CC = C*CS + D*SN
            DD = -C*SN + D*CS
*
*           Compute [ A  B ] = [ CS  SN ] [ AA  BB ]
*                   [ C  D ]   [-SN  CS ] [ CC  DD ]
*
            A = AA*CS + CC*SN
            B = BB*CS + DD*SN
            C = -AA*SN + CC*CS
            D = -BB*SN + DD*CS
*
            TEMP = HALF*( A+D )
            A = TEMP
            D = TEMP
*
            IF( C.NE.ZERO ) THEN
               IF( B.NE.ZERO ) THEN
                  IFSIGN( ONE, B ).EQ.SIGN( ONE, C ) ) THEN
*
*                    Real eigenvalues: reduce to upper triangular form
*
                     SAB = SQRTABS( B ) )
                     SAC = SQRTABS( C ) )
                     P = SIGN( SAB*SAC, C )
                     TAU = ONE / SQRTABS( B+C ) )
                     A = TEMP + P
                     D = TEMP - P
                     B = B - C
                     C = ZERO
                     CS1 = SAB*TAU
                     SN1 = SAC*TAU
                     TEMP = CS*CS1 - SN*SN1
                     SN = CS*SN1 + SN*CS1
                     CS = TEMP
                  END IF
               ELSE
                  B = -C
                  C = ZERO
                  TEMP = CS
                  CS = -SN
                  SN = TEMP
               END IF
            END IF
         END IF
*
      END IF
*
   10 CONTINUE
*
*     Store eigenvalues in (RT1R,RT1I) and (RT2R,RT2I).
*
      RT1R = A
      RT2R = D
      IF( C.EQ.ZERO ) THEN
         RT1I = ZERO
         RT2I = ZERO
      ELSE
         RT1I = SQRTABS( B ) )*SQRTABS( C ) )
         RT2I = -RT1I
      END IF
      RETURN
*
*     End of SLANV2
*
      END