1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
     225
     226
     227
     228
     229
     230
     231
     232
     233
     234
     235
     236
     237
     238
     239
     240
     241
     242
     243
     244
     245
     246
     247
     248
     249
     250
     251
     252
     253
     254
     255
     256
     257
     258
     259
     260
     261
     262
     263
     264
     265
     266
     267
     268
     269
     270
     271
     272
     273
     274
     275
     276
     277
     278
     279
     280
     281
     282
     283
     284
     285
     286
     287
     288
     289
     290
     291
     292
     293
     294
     295
     296
     297
     298
     299
     300
     301
     302
     303
     304
     305
     306
     307
     308
     309
     310
     311
     312
     313
     314
     315
     316
     317
     318
     319
     320
     321
     322
     323
     324
     325
     326
     327
     328
     329
     330
     331
     332
     333
     334
     335
     336
     337
     338
     339
     340
     341
     342
     343
     344
     345
     346
     347
     348
     349
     350
     351
     352
     353
     354
     355
     356
     357
     358
     359
     360
     361
     362
     363
     364
     365
     366
     367
     368
     369
     370
     371
     372
     373
     374
     375
     376
     377
     378
     379
     380
     381
     382
     383
     384
     385
     386
     387
     388
     389
     390
     391
     392
     393
     394
     395
     396
     397
     398
     399
     400
     401
     402
     403
     404
     405
     406
     407
     408
     409
     410
     411
     412
     413
     414
     415
     416
     417
     418
     419
     420
     421
     422
     423
     424
     425
     426
     427
     428
     429
     430
     431
     432
     433
     434
     435
     436
     437
     438
     439
     440
     441
     442
     443
     444
     445
     446
     447
     448
     449
     450
     451
     452
     453
     454
     455
     456
     457
     458
     459
     460
     461
     462
     463
     464
     465
     466
     467
     468
     469
     470
     471
     472
     473
     474
     475
     476
     477
     478
     479
     480
     481
     482
     483
     484
     485
     486
     487
     488
     489
     490
     491
     492
     493
     494
     495
     496
     497
     498
     499
     500
     501
     502
     503
     504
     505
     506
     507
     508
     509
     510
     511
     512
     513
     514
     515
     516
     517
     518
     519
     520
     521
     522
     523
     524
     525
     526
     527
     528
     529
     530
     531
     532
     533
     534
     535
     536
     537
     538
     539
     540
     541
     542
     543
     544
     545
     546
     547
     548
     549
     550
     551
     552
     553
     554
     555
     556
     557
      SUBROUTINE SLAQR3( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
     $                   IHIZ, Z, LDZ, NS, ND, SR, SI, V, LDV, NH, T,
     $                   LDT, NV, WV, LDWV, WORK, LWORK )
*
*  -- LAPACK auxiliary routine (version 3.2.1)                        --
*     Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..
*  -- April 2009                                                      --
*
*     .. Scalar Arguments ..
      INTEGER            IHIZ, ILOZ, KBOT, KTOP, LDH, LDT, LDV, LDWV,
     $                   LDZ, LWORK, N, ND, NH, NS, NV, NW
      LOGICAL            WANTT, WANTZ
*     ..
*     .. Array Arguments ..
      REAL               H( LDH, * ), SI( * ), SR( * ), T( LDT, * ),
     $                   V( LDV, * ), WORK( * ), WV( LDWV, * ),
     $                   Z( LDZ, * )
*     ..
*
*     ******************************************************************
*     Aggressive early deflation:
*
*     This subroutine accepts as input an upper Hessenberg matrix
*     H and performs an orthogonal similarity transformation
*     designed to detect and deflate fully converged eigenvalues from
*     a trailing principal submatrix.  On output H has been over-
*     written by a new Hessenberg matrix that is a perturbation of
*     an orthogonal similarity transformation of H.  It is to be
*     hoped that the final version of H has many zero subdiagonal
*     entries.
*
*     ******************************************************************
*     WANTT   (input) LOGICAL
*          If .TRUE., then the Hessenberg matrix H is fully updated
*          so that the quasi-triangular Schur factor may be
*          computed (in cooperation with the calling subroutine).
*          If .FALSE., then only enough of H is updated to preserve
*          the eigenvalues.
*
*     WANTZ   (input) LOGICAL
*          If .TRUE., then the orthogonal matrix Z is updated so
*          so that the orthogonal Schur factor may be computed
*          (in cooperation with the calling subroutine).
*          If .FALSE., then Z is not referenced.
*
*     N       (input) INTEGER
*          The order of the matrix H and (if WANTZ is .TRUE.) the
*          order of the orthogonal matrix Z.
*
*     KTOP    (input) INTEGER
*          It is assumed that either KTOP = 1 or H(KTOP,KTOP-1)=0.
*          KBOT and KTOP together determine an isolated block
*          along the diagonal of the Hessenberg matrix.
*
*     KBOT    (input) INTEGER
*          It is assumed without a check that either
*          KBOT = N or H(KBOT+1,KBOT)=0.  KBOT and KTOP together
*          determine an isolated block along the diagonal of the
*          Hessenberg matrix.
*
*     NW      (input) INTEGER
*          Deflation window size.  1 .LE. NW .LE. (KBOT-KTOP+1).
*
*     H       (input/output) REAL array, dimension (LDH,N)
*          On input the initial N-by-N section of H stores the
*          Hessenberg matrix undergoing aggressive early deflation.
*          On output H has been transformed by an orthogonal
*          similarity transformation, perturbed, and the returned
*          to Hessenberg form that (it is to be hoped) has some
*          zero subdiagonal entries.
*
*     LDH     (input) integer
*          Leading dimension of H just as declared in the calling
*          subroutine.  N .LE. LDH
*
*     ILOZ    (input) INTEGER
*     IHIZ    (input) INTEGER
*          Specify the rows of Z to which transformations must be
*          applied if WANTZ is .TRUE.. 1 .LE. ILOZ .LE. IHIZ .LE. N.
*
*     Z       (input/output) REAL array, dimension (LDZ,N)
*          IF WANTZ is .TRUE., then on output, the orthogonal
*          similarity transformation mentioned above has been
*          accumulated into Z(ILOZ:IHIZ,ILO:IHI) from the right.
*          If WANTZ is .FALSE., then Z is unreferenced.
*
*     LDZ     (input) integer
*          The leading dimension of Z just as declared in the
*          calling subroutine.  1 .LE. LDZ.
*
*     NS      (output) integer
*          The number of unconverged (ie approximate) eigenvalues
*          returned in SR and SI that may be used as shifts by the
*          calling subroutine.
*
*     ND      (output) integer
*          The number of converged eigenvalues uncovered by this
*          subroutine.
*
*     SR      (output) REAL array, dimension KBOT
*     SI      (output) REAL array, dimension KBOT
*          On output, the real and imaginary parts of approximate
*          eigenvalues that may be used for shifts are stored in
*          SR(KBOT-ND-NS+1) through SR(KBOT-ND) and
*          SI(KBOT-ND-NS+1) through SI(KBOT-ND), respectively.
*          The real and imaginary parts of converged eigenvalues
*          are stored in SR(KBOT-ND+1) through SR(KBOT) and
*          SI(KBOT-ND+1) through SI(KBOT), respectively.
*
*     V       (workspace) REAL array, dimension (LDV,NW)
*          An NW-by-NW work array.
*
*     LDV     (input) integer scalar
*          The leading dimension of V just as declared in the
*          calling subroutine.  NW .LE. LDV
*
*     NH      (input) integer scalar
*          The number of columns of T.  NH.GE.NW.
*
*     T       (workspace) REAL array, dimension (LDT,NW)
*
*     LDT     (input) integer
*          The leading dimension of T just as declared in the
*          calling subroutine.  NW .LE. LDT
*
*     NV      (input) integer
*          The number of rows of work array WV available for
*          workspace.  NV.GE.NW.
*
*     WV      (workspace) REAL array, dimension (LDWV,NW)
*
*     LDWV    (input) integer
*          The leading dimension of W just as declared in the
*          calling subroutine.  NW .LE. LDV
*
*     WORK    (workspace) REAL array, dimension LWORK.
*          On exit, WORK(1) is set to an estimate of the optimal value
*          of LWORK for the given values of N, NW, KTOP and KBOT.
*
*     LWORK   (input) integer
*          The dimension of the work array WORK.  LWORK = 2*NW
*          suffices, but greater efficiency may result from larger
*          values of LWORK.
*
*          If LWORK = -1, then a workspace query is assumed; SLAQR3
*          only estimates the optimal workspace size for the given
*          values of N, NW, KTOP and KBOT.  The estimate is returned
*          in WORK(1).  No error message related to LWORK is issued
*          by XERBLA.  Neither H nor Z are accessed.
*
*     ================================================================
*     Based on contributions by
*        Karen Braman and Ralph Byers, Department of Mathematics,
*        University of Kansas, USA
*
*     ================================================================
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0e0, ONE = 1.0e0 )
*     ..
*     .. Local Scalars ..
      REAL               AA, BB, BETA, CC, CS, DD, EVI, EVK, FOO, S,
     $                   SAFMAX, SAFMIN, SMLNUM, SN, TAU, ULP
      INTEGER            I, IFST, ILST, INFO, INFQR, J, JW, K, KCOL,
     $                   KEND, KLN, KROW, KWTOP, LTOP, LWK1, LWK2, LWK3,
     $                   LWKOPT, NMIN
      LOGICAL            BULGE, SORTED
*     ..
*     .. External Functions ..
      REAL               SLAMCH
      INTEGER            ILAENV
      EXTERNAL           SLAMCH, ILAENV
*     ..
*     .. External Subroutines ..
      EXTERNAL           SCOPY, SGEHRD, SGEMM, SLABAD, SLACPY, SLAHQR,
     $                   SLANV2, SLAQR4, SLARF, SLARFG, SLASET, SORMHR,
     $                   STREXC
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABSINTMAXMIN, REAL, SQRT
*     ..
*     .. Executable Statements ..
*
*     ==== Estimate optimal workspace. ====
*
      JW = MIN( NW, KBOT-KTOP+1 )
      IF( JW.LE.2 ) THEN
         LWKOPT = 1
      ELSE
*
*        ==== Workspace query call to SGEHRD ====
*
         CALL SGEHRD( JW, 1, JW-1, T, LDT, WORK, WORK, -1, INFO )
         LWK1 = INT( WORK( 1 ) )
*
*        ==== Workspace query call to SORMHR ====
*
         CALL SORMHR( 'R''N', JW, JW, 1, JW-1, T, LDT, WORK, V, LDV,
     $                WORK, -1, INFO )
         LWK2 = INT( WORK( 1 ) )
*
*        ==== Workspace query call to SLAQR4 ====
*
         CALL SLAQR4( .true..true., JW, 1, JW, T, LDT, SR, SI, 1, JW,
     $                V, LDV, WORK, -1, INFQR )
         LWK3 = INT( WORK( 1 ) )
*
*        ==== Optimal workspace ====
*
         LWKOPT = MAX( JW+MAX( LWK1, LWK2 ), LWK3 )
      END IF
*
*     ==== Quick return in case of workspace query. ====
*
      IF( LWORK.EQ.-1 ) THEN
         WORK( 1 ) = REAL( LWKOPT )
         RETURN
      END IF
*
*     ==== Nothing to do ...
*     ... for an empty active block ... ====
      NS = 0
      ND = 0
      WORK( 1 ) = ONE
      IF( KTOP.GT.KBOT )
     $   RETURN
*     ... nor for an empty deflation window. ====
      IF( NW.LT.1 )
     $   RETURN
*
*     ==== Machine constants ====
*
      SAFMIN = SLAMCH( 'SAFE MINIMUM' )
      SAFMAX = ONE / SAFMIN
      CALL SLABAD( SAFMIN, SAFMAX )
      ULP = SLAMCH( 'PRECISION' )
      SMLNUM = SAFMIN*REAL( N ) / ULP )
*
*     ==== Setup deflation window ====
*
      JW = MIN( NW, KBOT-KTOP+1 )
      KWTOP = KBOT - JW + 1
      IF( KWTOP.EQ.KTOP ) THEN
         S = ZERO
      ELSE
         S = H( KWTOP, KWTOP-1 )
      END IF
*
      IF( KBOT.EQ.KWTOP ) THEN
*
*        ==== 1-by-1 deflation window: not much to do ====
*
         SR( KWTOP ) = H( KWTOP, KWTOP )
         SI( KWTOP ) = ZERO
         NS = 1
         ND = 0
         IFABS( S ).LE.MAX( SMLNUM, ULP*ABS( H( KWTOP, KWTOP ) ) ) )
     $        THEN
            NS = 0
            ND = 1
            IF( KWTOP.GT.KTOP )
     $         H( KWTOP, KWTOP-1 ) = ZERO
         END IF
         WORK( 1 ) = ONE
         RETURN
      END IF
*
*     ==== Convert to spike-triangular form.  (In case of a
*     .    rare QR failure, this routine continues to do
*     .    aggressive early deflation using that part of
*     .    the deflation window that converged using INFQR
*     .    here and there to keep track.) ====
*
      CALL SLACPY( 'U', JW, JW, H( KWTOP, KWTOP ), LDH, T, LDT )
      CALL SCOPY( JW-1, H( KWTOP+1, KWTOP ), LDH+1, T( 21 ), LDT+1 )
*
      CALL SLASET( 'A', JW, JW, ZERO, ONE, V, LDV )
      NMIN = ILAENV( 12'SLAQR3''SV', JW, 1, JW, LWORK )
      IF( JW.GT.NMIN ) THEN
         CALL SLAQR4( .true..true., JW, 1, JW, T, LDT, SR( KWTOP ),
     $                SI( KWTOP ), 1, JW, V, LDV, WORK, LWORK, INFQR )
      ELSE
         CALL SLAHQR( .true..true., JW, 1, JW, T, LDT, SR( KWTOP ),
     $                SI( KWTOP ), 1, JW, V, LDV, INFQR )
      END IF
*
*     ==== STREXC needs a clean margin near the diagonal ====
*
      DO 10 J = 1, JW - 3
         T( J+2, J ) = ZERO
         T( J+3, J ) = ZERO
   10 CONTINUE
      IF( JW.GT.2 )
     $   T( JW, JW-2 ) = ZERO
*
*     ==== Deflation detection loop ====
*
      NS = JW
      ILST = INFQR + 1
   20 CONTINUE
      IF( ILST.LE.NS ) THEN
         IF( NS.EQ.1 ) THEN
            BULGE = .FALSE.
         ELSE
            BULGE = T( NS, NS-1 ).NE.ZERO
         END IF
*
*        ==== Small spike tip test for deflation ====
*
         IF.NOT.BULGE ) THEN
*
*           ==== Real eigenvalue ====
*
            FOO = ABS( T( NS, NS ) )
            IF( FOO.EQ.ZERO )
     $         FOO = ABS( S )
            IFABS( S*V( 1, NS ) ).LE.MAX( SMLNUM, ULP*FOO ) ) THEN
*
*              ==== Deflatable ====
*
               NS = NS - 1
            ELSE
*
*              ==== Undeflatable.   Move it up out of the way.
*              .    (STREXC can not fail in this case.) ====
*
               IFST = NS
               CALL STREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, WORK,
     $                      INFO )
               ILST = ILST + 1
            END IF
         ELSE
*
*           ==== Complex conjugate pair ====
*
            FOO = ABS( T( NS, NS ) ) + SQRTABS( T( NS, NS-1 ) ) )*
     $            SQRTABS( T( NS-1, NS ) ) )
            IF( FOO.EQ.ZERO )
     $         FOO = ABS( S )
            IFMAXABS( S*V( 1, NS ) ), ABS( S*V( 1, NS-1 ) ) ).LE.
     $          MAX( SMLNUM, ULP*FOO ) ) THEN
*
*              ==== Deflatable ====
*
               NS = NS - 2
            ELSE
*
*              ==== Undeflatable. Move them up out of the way.
*              .    Fortunately, STREXC does the right thing with
*              .    ILST in case of a rare exchange failure. ====
*
               IFST = NS
               CALL STREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, WORK,
     $                      INFO )
               ILST = ILST + 2
            END IF
         END IF
*
*        ==== End deflation detection loop ====
*
         GO TO 20
      END IF
*
*        ==== Return to Hessenberg form ====
*
      IF( NS.EQ.0 )
     $   S = ZERO
*
      IF( NS.LT.JW ) THEN
*
*        ==== sorting diagonal blocks of T improves accuracy for
*        .    graded matrices.  Bubble sort deals well with
*        .    exchange failures. ====
*
         SORTED = .false.
         I = NS + 1
   30    CONTINUE
         IF( SORTED )
     $      GO TO 50
         SORTED = .true.
*
         KEND = I - 1
         I = INFQR + 1
         IF( I.EQ.NS ) THEN
            K = I + 1
         ELSE IF( T( I+1, I ).EQ.ZERO ) THEN
            K = I + 1
         ELSE
            K = I + 2
         END IF
   40    CONTINUE
         IF( K.LE.KEND ) THEN
            IF( K.EQ.I+1 ) THEN
               EVI = ABS( T( I, I ) )
            ELSE
               EVI = ABS( T( I, I ) ) + SQRTABS( T( I+1, I ) ) )*
     $               SQRTABS( T( I, I+1 ) ) )
            END IF
*
            IF( K.EQ.KEND ) THEN
               EVK = ABS( T( K, K ) )
            ELSE IF( T( K+1, K ).EQ.ZERO ) THEN
               EVK = ABS( T( K, K ) )
            ELSE
               EVK = ABS( T( K, K ) ) + SQRTABS( T( K+1, K ) ) )*
     $               SQRTABS( T( K, K+1 ) ) )
            END IF
*
            IF( EVI.GE.EVK ) THEN
               I = K
            ELSE
               SORTED = .false.
               IFST = I
               ILST = K
               CALL STREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, WORK,
     $                      INFO )
               IF( INFO.EQ.0 ) THEN
                  I = ILST
               ELSE
                  I = K
               END IF
            END IF
            IF( I.EQ.KEND ) THEN
               K = I + 1
            ELSE IF( T( I+1, I ).EQ.ZERO ) THEN
               K = I + 1
            ELSE
               K = I + 2
            END IF
            GO TO 40
         END IF
         GO TO 30
   50    CONTINUE
      END IF
*
*     ==== Restore shift/eigenvalue array from T ====
*
      I = JW
   60 CONTINUE
      IF( I.GE.INFQR+1 ) THEN
         IF( I.EQ.INFQR+1 ) THEN
            SR( KWTOP+I-1 ) = T( I, I )
            SI( KWTOP+I-1 ) = ZERO
            I = I - 1
         ELSE IF( T( I, I-1 ).EQ.ZERO ) THEN
            SR( KWTOP+I-1 ) = T( I, I )
            SI( KWTOP+I-1 ) = ZERO
            I = I - 1
         ELSE
            AA = T( I-1, I-1 )
            CC = T( I, I-1 )
            BB = T( I-1, I )
            DD = T( I, I )
            CALL SLANV2( AA, BB, CC, DD, SR( KWTOP+I-2 ),
     $                   SI( KWTOP+I-2 ), SR( KWTOP+I-1 ),
     $                   SI( KWTOP+I-1 ), CS, SN )
            I = I - 2
         END IF
         GO TO 60
      END IF
*
      IF( NS.LT.JW .OR. S.EQ.ZERO ) THEN
         IF( NS.GT.1 .AND. S.NE.ZERO ) THEN
*
*           ==== Reflect spike back into lower triangle ====
*
            CALL SCOPY( NS, V, LDV, WORK, 1 )
            BETA = WORK( 1 )
            CALL SLARFG( NS, BETA, WORK( 2 ), 1, TAU )
            WORK( 1 ) = ONE
*
            CALL SLASET( 'L', JW-2, JW-2, ZERO, ZERO, T( 31 ), LDT )
*
            CALL SLARF( 'L', NS, JW, WORK, 1, TAU, T, LDT,
     $                  WORK( JW+1 ) )
            CALL SLARF( 'R', NS, NS, WORK, 1, TAU, T, LDT,
     $                  WORK( JW+1 ) )
            CALL SLARF( 'R', JW, NS, WORK, 1, TAU, V, LDV,
     $                  WORK( JW+1 ) )
*
            CALL SGEHRD( JW, 1, NS, T, LDT, WORK, WORK( JW+1 ),
     $                   LWORK-JW, INFO )
         END IF
*
*        ==== Copy updated reduced window into place ====
*
         IF( KWTOP.GT.1 )
     $      H( KWTOP, KWTOP-1 ) = S*V( 11 )
         CALL SLACPY( 'U', JW, JW, T, LDT, H( KWTOP, KWTOP ), LDH )
         CALL SCOPY( JW-1, T( 21 ), LDT+1, H( KWTOP+1, KWTOP ),
     $               LDH+1 )
*
*        ==== Accumulate orthogonal matrix in order update
*        .    H and Z, if requested.  ====
*
         IF( NS.GT.1 .AND. S.NE.ZERO )
     $      CALL SORMHR( 'R''N', JW, NS, 1, NS, T, LDT, WORK, V, LDV,
     $                   WORK( JW+1 ), LWORK-JW, INFO )
*
*        ==== Update vertical slab in H ====
*
         IF( WANTT ) THEN
            LTOP = 1
         ELSE
            LTOP = KTOP
         END IF
         DO 70 KROW = LTOP, KWTOP - 1, NV
            KLN = MIN( NV, KWTOP-KROW )
            CALL SGEMM( 'N''N', KLN, JW, JW, ONE, H( KROW, KWTOP ),
     $                  LDH, V, LDV, ZERO, WV, LDWV )
            CALL SLACPY( 'A', KLN, JW, WV, LDWV, H( KROW, KWTOP ), LDH )
   70    CONTINUE
*
*        ==== Update horizontal slab in H ====
*
         IF( WANTT ) THEN
            DO 80 KCOL = KBOT + 1, N, NH
               KLN = MIN( NH, N-KCOL+1 )
               CALL SGEMM( 'C''N', JW, KLN, JW, ONE, V, LDV,
     $                     H( KWTOP, KCOL ), LDH, ZERO, T, LDT )
               CALL SLACPY( 'A', JW, KLN, T, LDT, H( KWTOP, KCOL ),
     $                      LDH )
   80       CONTINUE
         END IF
*
*        ==== Update vertical slab in Z ====
*
         IF( WANTZ ) THEN
            DO 90 KROW = ILOZ, IHIZ, NV
               KLN = MIN( NV, IHIZ-KROW+1 )
               CALL SGEMM( 'N''N', KLN, JW, JW, ONE, Z( KROW, KWTOP ),
     $                     LDZ, V, LDV, ZERO, WV, LDWV )
               CALL SLACPY( 'A', KLN, JW, WV, LDWV, Z( KROW, KWTOP ),
     $                      LDZ )
   90       CONTINUE
         END IF
      END IF
*
*     ==== Return the number of deflations ... ====
*
      ND = JW - NS
*
*     ==== ... and the number of shifts. (Subtracting
*     .    INFQR from the spike length takes care
*     .    of the case of a rare QR failure while
*     .    calculating eigenvalues of the deflation
*     .    window.)  ====
*
      NS = NS - INFQR
*
*      ==== Return optimal workspace. ====
*
      WORK( 1 ) = REAL( LWKOPT )
*
*     ==== End of SLAQR3 ====
*
      END