1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
     225
     226
     227
     228
     229
     230
     231
     232
     233
     234
     235
     236
     237
     238
     239
     240
     241
     242
     243
     244
     245
     246
     247
     248
     249
     250
     251
     252
     253
     254
     255
     256
     257
     258
     259
     260
     261
     262
     263
     264
     265
     266
     267
     268
     269
     270
     271
     272
     273
     274
     275
     276
     277
     278
     279
     280
     281
     282
     283
     284
     285
     286
     287
     288
     289
     290
     291
     292
     293
     294
     295
     296
     297
     298
     299
     300
     301
     302
     303
     304
     305
     306
     307
     308
     309
     310
     311
     312
     313
     314
     315
     316
     317
     318
     319
     320
     321
     322
     323
     324
     325
     326
     327
     328
     329
     330
     331
     332
     333
     334
     335
     336
     337
     338
     339
     340
     341
     342
     343
     344
     345
     346
     347
     348
     349
     350
     351
     352
     353
     354
     355
     356
     357
     358
     359
     360
     361
     362
     363
     364
     365
     366
     367
     368
     369
     370
     371
     372
     373
     374
     375
     376
     377
     378
     379
     380
     381
     382
     383
     384
     385
     386
     387
     388
     389
     390
     391
     392
     393
     394
     395
     396
     397
     398
     399
     400
     401
     402
     403
     404
     405
     406
     407
     408
     409
     410
     411
     412
     413
     414
     415
     416
     417
     418
     419
     420
     421
     422
     423
     424
     425
     426
     427
     428
     429
     430
     431
     432
     433
     434
     435
     436
     437
     438
     439
     440
     441
     442
     443
     444
     445
     446
     447
     448
     449
     450
     451
     452
     453
     454
     455
     456
     457
     458
     459
     460
     461
     462
     463
     464
     465
     466
     467
     468
     469
     470
     471
     472
     473
     474
     475
     476
     477
     478
     479
     480
     481
     482
     483
     484
     485
     486
     487
     488
     489
     490
     491
     492
     493
     494
     495
     496
     497
     498
     499
     500
     501
     502
     503
     504
     505
     506
     507
     508
     509
     510
     511
     512
     513
      SUBROUTINE SLASD2( NL, NR, SQRE, K, D, Z, ALPHA, BETA, U, LDU, VT,
     $                   LDVT, DSIGMA, U2, LDU2, VT2, LDVT2, IDXP, IDX,
     $                   IDXC, IDXQ, COLTYP, INFO )
*
*  -- LAPACK auxiliary routine (version 3.2) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2006
*
*     .. Scalar Arguments ..
      INTEGER            INFO, K, LDU, LDU2, LDVT, LDVT2, NL, NR, SQRE
      REAL               ALPHA, BETA
*     ..
*     .. Array Arguments ..
      INTEGER            COLTYP( * ), IDX( * ), IDXC( * ), IDXP( * ),
     $                   IDXQ( * )
      REAL               D( * ), DSIGMA( * ), U( LDU, * ),
     $                   U2( LDU2, * ), VT( LDVT, * ), VT2( LDVT2, * ),
     $                   Z( * )
*     ..
*
*  Purpose
*  =======
*
*  SLASD2 merges the two sets of singular values together into a single
*  sorted set.  Then it tries to deflate the size of the problem.
*  There are two ways in which deflation can occur:  when two or more
*  singular values are close together or if there is a tiny entry in the
*  Z vector.  For each such occurrence the order of the related secular
*  equation problem is reduced by one.
*
*  SLASD2 is called from SLASD1.
*
*  Arguments
*  =========
*
*  NL     (input) INTEGER
*         The row dimension of the upper block.  NL >= 1.
*
*  NR     (input) INTEGER
*         The row dimension of the lower block.  NR >= 1.
*
*  SQRE   (input) INTEGER
*         = 0: the lower block is an NR-by-NR square matrix.
*         = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
*
*         The bidiagonal matrix has N = NL + NR + 1 rows and
*         M = N + SQRE >= N columns.
*
*  K      (output) INTEGER
*         Contains the dimension of the non-deflated matrix,
*         This is the order of the related secular equation. 1 <= K <=N.
*
*  D      (input/output) REAL array, dimension (N)
*         On entry D contains the singular values of the two submatrices
*         to be combined.  On exit D contains the trailing (N-K) updated
*         singular values (those which were deflated) sorted into
*         increasing order.
*
*  Z      (output) REAL array, dimension (N)
*         On exit Z contains the updating row vector in the secular
*         equation.
*
*  ALPHA  (input) REAL
*         Contains the diagonal element associated with the added row.
*
*  BETA   (input) REAL
*         Contains the off-diagonal element associated with the added
*         row.
*
*  U      (input/output) REAL array, dimension (LDU,N)
*         On entry U contains the left singular vectors of two
*         submatrices in the two square blocks with corners at (1,1),
*         (NL, NL), and (NL+2, NL+2), (N,N).
*         On exit U contains the trailing (N-K) updated left singular
*         vectors (those which were deflated) in its last N-K columns.
*
*  LDU    (input) INTEGER
*         The leading dimension of the array U.  LDU >= N.
*
*  VT     (input/output) REAL array, dimension (LDVT,M)
*         On entry VT**T contains the right singular vectors of two
*         submatrices in the two square blocks with corners at (1,1),
*         (NL+1, NL+1), and (NL+2, NL+2), (M,M).
*         On exit VT**T contains the trailing (N-K) updated right singular
*         vectors (those which were deflated) in its last N-K columns.
*         In case SQRE =1, the last row of VT spans the right null
*         space.
*
*  LDVT   (input) INTEGER
*         The leading dimension of the array VT.  LDVT >= M.
*
*  DSIGMA (output) REAL array, dimension (N)
*         Contains a copy of the diagonal elements (K-1 singular values
*         and one zero) in the secular equation.
*
*  U2     (output) REAL array, dimension (LDU2,N)
*         Contains a copy of the first K-1 left singular vectors which
*         will be used by SLASD3 in a matrix multiply (SGEMM) to solve
*         for the new left singular vectors. U2 is arranged into four
*         blocks. The first block contains a column with 1 at NL+1 and
*         zero everywhere else; the second block contains non-zero
*         entries only at and above NL; the third contains non-zero
*         entries only below NL+1; and the fourth is dense.
*
*  LDU2   (input) INTEGER
*         The leading dimension of the array U2.  LDU2 >= N.
*
*  VT2    (output) REAL array, dimension (LDVT2,N)
*         VT2**T contains a copy of the first K right singular vectors
*         which will be used by SLASD3 in a matrix multiply (SGEMM) to
*         solve for the new right singular vectors. VT2 is arranged into
*         three blocks. The first block contains a row that corresponds
*         to the special 0 diagonal element in SIGMA; the second block
*         contains non-zeros only at and before NL +1; the third block
*         contains non-zeros only at and after  NL +2.
*
*  LDVT2  (input) INTEGER
*         The leading dimension of the array VT2.  LDVT2 >= M.
*
*  IDXP   (workspace) INTEGER array, dimension (N)
*         This will contain the permutation used to place deflated
*         values of D at the end of the array. On output IDXP(2:K)
*         points to the nondeflated D-values and IDXP(K+1:N)
*         points to the deflated singular values.
*
*  IDX    (workspace) INTEGER array, dimension (N)
*         This will contain the permutation used to sort the contents of
*         D into ascending order.
*
*  IDXC   (output) INTEGER array, dimension (N)
*         This will contain the permutation used to arrange the columns
*         of the deflated U matrix into three groups:  the first group
*         contains non-zero entries only at and above NL, the second
*         contains non-zero entries only below NL+2, and the third is
*         dense.
*
*  IDXQ   (input/output) INTEGER array, dimension (N)
*         This contains the permutation which separately sorts the two
*         sub-problems in D into ascending order.  Note that entries in
*         the first hlaf of this permutation must first be moved one
*         position backward; and entries in the second half
*         must first have NL+1 added to their values.
*
*  COLTYP (workspace/output) INTEGER array, dimension (N)
*         As workspace, this will contain a label which will indicate
*         which of the following types a column in the U2 matrix or a
*         row in the VT2 matrix is:
*         1 : non-zero in the upper half only
*         2 : non-zero in the lower half only
*         3 : dense
*         4 : deflated
*
*         On exit, it is an array of dimension 4, with COLTYP(I) being
*         the dimension of the I-th type columns.
*
*  INFO   (output) INTEGER
*          = 0:  successful exit.
*          < 0:  if INFO = -i, the i-th argument had an illegal value.
*
*  Further Details
*  ===============
*
*  Based on contributions by
*     Ming Gu and Huan Ren, Computer Science Division, University of
*     California at Berkeley, USA
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE, TWO, EIGHT
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0, TWO = 2.0E+0,
     $                   EIGHT = 8.0E+0 )
*     ..
*     .. Local Arrays ..
      INTEGER            CTOT( 4 ), PSM( 4 )
*     ..
*     .. Local Scalars ..
      INTEGER            CT, I, IDXI, IDXJ, IDXJP, J, JP, JPREV, K2, M,
     $                   N, NLP1, NLP2
      REAL               C, EPS, HLFTOL, S, TAU, TOL, Z1
*     ..
*     .. External Functions ..
      REAL               SLAMCH, SLAPY2
      EXTERNAL           SLAMCH, SLAPY2
*     ..
*     .. External Subroutines ..
      EXTERNAL           SCOPY, SLACPY, SLAMRG, SLASET, SROT, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABSMAX
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
*
      IF( NL.LT.1 ) THEN
         INFO = -1
      ELSE IF( NR.LT.1 ) THEN
         INFO = -2
      ELSE IF( ( SQRE.NE.1 ) .AND. ( SQRE.NE.0 ) ) THEN
         INFO = -3
      END IF
*
      N = NL + NR + 1
      M = N + SQRE
*
      IF( LDU.LT.N ) THEN
         INFO = -10
      ELSE IF( LDVT.LT.M ) THEN
         INFO = -12
      ELSE IF( LDU2.LT.N ) THEN
         INFO = -15
      ELSE IF( LDVT2.LT.M ) THEN
         INFO = -17
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SLASD2'-INFO )
         RETURN
      END IF
*
      NLP1 = NL + 1
      NLP2 = NL + 2
*
*     Generate the first part of the vector Z; and move the singular
*     values in the first part of D one position backward.
*
      Z1 = ALPHA*VT( NLP1, NLP1 )
      Z( 1 ) = Z1
      DO 10 I = NL, 1-1
         Z( I+1 ) = ALPHA*VT( I, NLP1 )
         D( I+1 ) = D( I )
         IDXQ( I+1 ) = IDXQ( I ) + 1
   10 CONTINUE
*
*     Generate the second part of the vector Z.
*
      DO 20 I = NLP2, M
         Z( I ) = BETA*VT( I, NLP2 )
   20 CONTINUE
*
*     Initialize some reference arrays.
*
      DO 30 I = 2, NLP1
         COLTYP( I ) = 1
   30 CONTINUE
      DO 40 I = NLP2, N
         COLTYP( I ) = 2
   40 CONTINUE
*
*     Sort the singular values into increasing order
*
      DO 50 I = NLP2, N
         IDXQ( I ) = IDXQ( I ) + NLP1
   50 CONTINUE
*
*     DSIGMA, IDXC, IDXC, and the first column of U2
*     are used as storage space.
*
      DO 60 I = 2, N
         DSIGMA( I ) = D( IDXQ( I ) )
         U2( I, 1 ) = Z( IDXQ( I ) )
         IDXC( I ) = COLTYP( IDXQ( I ) )
   60 CONTINUE
*
      CALL SLAMRG( NL, NR, DSIGMA( 2 ), 11, IDX( 2 ) )
*
      DO 70 I = 2, N
         IDXI = 1 + IDX( I )
         D( I ) = DSIGMA( IDXI )
         Z( I ) = U2( IDXI, 1 )
         COLTYP( I ) = IDXC( IDXI )
   70 CONTINUE
*
*     Calculate the allowable deflation tolerance
*
      EPS = SLAMCH( 'Epsilon' )
      TOL = MAXABS( ALPHA ), ABS( BETA ) )
      TOL = EIGHT*EPS*MAXABS( D( N ) ), TOL )
*
*     There are 2 kinds of deflation -- first a value in the z-vector
*     is small, second two (or more) singular values are very close
*     together (their difference is small).
*
*     If the value in the z-vector is small, we simply permute the
*     array so that the corresponding singular value is moved to the
*     end.
*
*     If two values in the D-vector are close, we perform a two-sided
*     rotation designed to make one of the corresponding z-vector
*     entries zero, and then permute the array so that the deflated
*     singular value is moved to the end.
*
*     If there are multiple singular values then the problem deflates.
*     Here the number of equal singular values are found.  As each equal
*     singular value is found, an elementary reflector is computed to
*     rotate the corresponding singular subspace so that the
*     corresponding components of Z are zero in this new basis.
*
      K = 1
      K2 = N + 1
      DO 80 J = 2, N
         IFABS( Z( J ) ).LE.TOL ) THEN
*
*           Deflate due to small z component.
*
            K2 = K2 - 1
            IDXP( K2 ) = J
            COLTYP( J ) = 4
            IF( J.EQ.N )
     $         GO TO 120
         ELSE
            JPREV = J
            GO TO 90
         END IF
   80 CONTINUE
   90 CONTINUE
      J = JPREV
  100 CONTINUE
      J = J + 1
      IF( J.GT.N )
     $   GO TO 110
      IFABS( Z( J ) ).LE.TOL ) THEN
*
*        Deflate due to small z component.
*
         K2 = K2 - 1
         IDXP( K2 ) = J
         COLTYP( J ) = 4
      ELSE
*
*        Check if singular values are close enough to allow deflation.
*
         IFABS( D( J )-D( JPREV ) ).LE.TOL ) THEN
*
*           Deflation is possible.
*
            S = Z( JPREV )
            C = Z( J )
*
*           Find sqrt(a**2+b**2) without overflow or
*           destructive underflow.
*
            TAU = SLAPY2( C, S )
            C = C / TAU
            S = -/ TAU
            Z( J ) = TAU
            Z( JPREV ) = ZERO
*
*           Apply back the Givens rotation to the left and right
*           singular vector matrices.
*
            IDXJP = IDXQ( IDX( JPREV )+1 )
            IDXJ = IDXQ( IDX( J )+1 )
            IF( IDXJP.LE.NLP1 ) THEN
               IDXJP = IDXJP - 1
            END IF
            IF( IDXJ.LE.NLP1 ) THEN
               IDXJ = IDXJ - 1
            END IF
            CALL SROT( N, U( 1, IDXJP ), 1, U( 1, IDXJ ), 1, C, S )
            CALL SROT( M, VT( IDXJP, 1 ), LDVT, VT( IDXJ, 1 ), LDVT, C,
     $                 S )
            IF( COLTYP( J ).NE.COLTYP( JPREV ) ) THEN
               COLTYP( J ) = 3
            END IF
            COLTYP( JPREV ) = 4
            K2 = K2 - 1
            IDXP( K2 ) = JPREV
            JPREV = J
         ELSE
            K = K + 1
            U2( K, 1 ) = Z( JPREV )
            DSIGMA( K ) = D( JPREV )
            IDXP( K ) = JPREV
            JPREV = J
         END IF
      END IF
      GO TO 100
  110 CONTINUE
*
*     Record the last singular value.
*
      K = K + 1
      U2( K, 1 ) = Z( JPREV )
      DSIGMA( K ) = D( JPREV )
      IDXP( K ) = JPREV
*
  120 CONTINUE
*
*     Count up the total number of the various types of columns, then
*     form a permutation which positions the four column types into
*     four groups of uniform structure (although one or more of these
*     groups may be empty).
*
      DO 130 J = 14
         CTOT( J ) = 0
  130 CONTINUE
      DO 140 J = 2, N
         CT = COLTYP( J )
         CTOT( CT ) = CTOT( CT ) + 1
  140 CONTINUE
*
*     PSM(*) = Position in SubMatrix (of types 1 through 4)
*
      PSM( 1 ) = 2
      PSM( 2 ) = 2 + CTOT( 1 )
      PSM( 3 ) = PSM( 2 ) + CTOT( 2 )
      PSM( 4 ) = PSM( 3 ) + CTOT( 3 )
*
*     Fill out the IDXC array so that the permutation which it induces
*     will place all type-1 columns first, all type-2 columns next,
*     then all type-3's, and finally all type-4's, starting from the
*     second column. This applies similarly to the rows of VT.
*
      DO 150 J = 2, N
         JP = IDXP( J )
         CT = COLTYP( JP )
         IDXC( PSM( CT ) ) = J
         PSM( CT ) = PSM( CT ) + 1
  150 CONTINUE
*
*     Sort the singular values and corresponding singular vectors into
*     DSIGMA, U2, and VT2 respectively.  The singular values/vectors
*     which were not deflated go into the first K slots of DSIGMA, U2,
*     and VT2 respectively, while those which were deflated go into the
*     last N - K slots, except that the first column/row will be treated
*     separately.
*
      DO 160 J = 2, N
         JP = IDXP( J )
         DSIGMA( J ) = D( JP )
         IDXJ = IDXQ( IDX( IDXP( IDXC( J ) ) )+1 )
         IF( IDXJ.LE.NLP1 ) THEN
            IDXJ = IDXJ - 1
         END IF
         CALL SCOPY( N, U( 1, IDXJ ), 1, U2( 1, J ), 1 )
         CALL SCOPY( M, VT( IDXJ, 1 ), LDVT, VT2( J, 1 ), LDVT2 )
  160 CONTINUE
*
*     Determine DSIGMA(1), DSIGMA(2) and Z(1)
*
      DSIGMA( 1 ) = ZERO
      HLFTOL = TOL / TWO
      IFABS( DSIGMA( 2 ) ).LE.HLFTOL )
     $   DSIGMA( 2 ) = HLFTOL
      IF( M.GT.N ) THEN
         Z( 1 ) = SLAPY2( Z1, Z( M ) )
         IF( Z( 1 ).LE.TOL ) THEN
            C = ONE
            S = ZERO
            Z( 1 ) = TOL
         ELSE
            C = Z1 / Z( 1 )
            S = Z( M ) / Z( 1 )
         END IF
      ELSE
         IFABS( Z1 ).LE.TOL ) THEN
            Z( 1 ) = TOL
         ELSE
            Z( 1 ) = Z1
         END IF
      END IF
*
*     Move the rest of the updating row to Z.
*
      CALL SCOPY( K-1, U2( 21 ), 1, Z( 2 ), 1 )
*
*     Determine the first column of U2, the first row of VT2 and the
*     last row of VT.
*
      CALL SLASET( 'A', N, 1, ZERO, ZERO, U2, LDU2 )
      U2( NLP1, 1 ) = ONE
      IF( M.GT.N ) THEN
         DO 170 I = 1, NLP1
            VT( M, I ) = -S*VT( NLP1, I )
            VT2( 1, I ) = C*VT( NLP1, I )
  170    CONTINUE
         DO 180 I = NLP2, M
            VT2( 1, I ) = S*VT( M, I )
            VT( M, I ) = C*VT( M, I )
  180    CONTINUE
      ELSE
         CALL SCOPY( M, VT( NLP1, 1 ), LDVT, VT2( 11 ), LDVT2 )
      END IF
      IF( M.GT.N ) THEN
         CALL SCOPY( M, VT( M, 1 ), LDVT, VT2( M, 1 ), LDVT2 )
      END IF
*
*     The deflated singular values and their corresponding vectors go
*     into the back of D, U, and V respectively.
*
      IF( N.GT.K ) THEN
         CALL SCOPY( N-K, DSIGMA( K+1 ), 1, D( K+1 ), 1 )
         CALL SLACPY( 'A', N, N-K, U2( 1, K+1 ), LDU2, U( 1, K+1 ),
     $                LDU )
         CALL SLACPY( 'A', N-K, M, VT2( K+11 ), LDVT2, VT( K+11 ),
     $                LDVT )
      END IF
*
*     Copy CTOT into COLTYP for referencing in SLASD3.
*
      DO 190 J = 14
         COLTYP( J ) = CTOT( J )
  190 CONTINUE
*
      RETURN
*
*     End of SLASD2
*
      END