1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
     225
     226
     227
     228
     229
     230
     231
     232
     233
     234
     235
     236
     237
     238
     239
     240
     241
     242
     243
     244
     245
     246
     247
     248
     249
     250
     251
     252
     253
     254
     255
     256
     257
     258
     259
     260
     261
     262
     263
     264
     265
     266
     267
     268
     269
     270
     271
     272
     273
     274
     275
     276
     277
     278
     279
     280
     281
     282
     283
     284
     285
     286
     287
     288
     289
     290
     291
     292
     293
     294
     295
     296
     297
     298
     299
     300
     301
     302
     303
     304
     305
     306
     307
     308
     309
     310
     311
     312
     313
     314
     315
     316
     317
     318
     319
     320
     321
     322
     323
     324
     325
     326
     327
     328
     329
     330
     331
     332
     333
     334
     335
     336
     337
     338
     339
     340
     341
     342
     343
     344
     345
     346
     347
     348
     349
     350
     351
     352
     353
     354
     355
     356
     357
     358
     359
     360
     361
     362
     363
     364
     365
     366
     367
     368
     369
     370
     371
     372
     373
     374
     375
     376
     377
     378
     379
     380
     381
     382
     383
     384
     385
     386
     387
     388
     389
     390
     391
     392
     393
     394
     395
     396
     397
     398
     399
     400
     401
     402
     403
     404
     405
     406
     407
     408
     409
     410
     411
     412
     413
     414
     415
     416
     417
     418
     419
     420
     421
     422
     423
     424
     425
     426
     427
     428
     429
     430
     431
     432
     433
     434
     435
     436
     437
     438
     439
     440
     441
     442
     443
     444
     445
      SUBROUTINE SLASD7( ICOMPQ, NL, NR, SQRE, K, D, Z, ZW, VF, VFW, VL,
     $                   VLW, ALPHA, BETA, DSIGMA, IDX, IDXP, IDXQ,
     $                   PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM, LDGNUM,
     $                   C, S, INFO )
*
*  -- LAPACK auxiliary routine (version 3.2) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2006
*
*     .. Scalar Arguments ..
      INTEGER            GIVPTR, ICOMPQ, INFO, K, LDGCOL, LDGNUM, NL,
     $                   NR, SQRE
      REAL               ALPHA, BETA, C, S
*     ..
*     .. Array Arguments ..
      INTEGER            GIVCOL( LDGCOL, * ), IDX( * ), IDXP( * ),
     $                   IDXQ( * ), PERM( * )
      REAL               D( * ), DSIGMA( * ), GIVNUM( LDGNUM, * ),
     $                   VF( * ), VFW( * ), VL( * ), VLW( * ), Z( * ),
     $                   ZW( * )
*     ..
*
*  Purpose
*  =======
*
*  SLASD7 merges the two sets of singular values together into a single
*  sorted set. Then it tries to deflate the size of the problem. There
*  are two ways in which deflation can occur:  when two or more singular
*  values are close together or if there is a tiny entry in the Z
*  vector. For each such occurrence the order of the related
*  secular equation problem is reduced by one.
*
*  SLASD7 is called from SLASD6.
*
*  Arguments
*  =========
*
*  ICOMPQ  (input) INTEGER
*          Specifies whether singular vectors are to be computed
*          in compact form, as follows:
*          = 0: Compute singular values only.
*          = 1: Compute singular vectors of upper
*               bidiagonal matrix in compact form.
*
*  NL     (input) INTEGER
*         The row dimension of the upper block. NL >= 1.
*
*  NR     (input) INTEGER
*         The row dimension of the lower block. NR >= 1.
*
*  SQRE   (input) INTEGER
*         = 0: the lower block is an NR-by-NR square matrix.
*         = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
*
*         The bidiagonal matrix has
*         N = NL + NR + 1 rows and
*         M = N + SQRE >= N columns.
*
*  K      (output) INTEGER
*         Contains the dimension of the non-deflated matrix, this is
*         the order of the related secular equation. 1 <= K <=N.
*
*  D      (input/output) REAL array, dimension ( N )
*         On entry D contains the singular values of the two submatrices
*         to be combined. On exit D contains the trailing (N-K) updated
*         singular values (those which were deflated) sorted into
*         increasing order.
*
*  Z      (output) REAL array, dimension ( M )
*         On exit Z contains the updating row vector in the secular
*         equation.
*
*  ZW     (workspace) REAL array, dimension ( M )
*         Workspace for Z.
*
*  VF     (input/output) REAL array, dimension ( M )
*         On entry, VF(1:NL+1) contains the first components of all
*         right singular vectors of the upper block; and VF(NL+2:M)
*         contains the first components of all right singular vectors
*         of the lower block. On exit, VF contains the first components
*         of all right singular vectors of the bidiagonal matrix.
*
*  VFW    (workspace) REAL array, dimension ( M )
*         Workspace for VF.
*
*  VL     (input/output) REAL array, dimension ( M )
*         On entry, VL(1:NL+1) contains the  last components of all
*         right singular vectors of the upper block; and VL(NL+2:M)
*         contains the last components of all right singular vectors
*         of the lower block. On exit, VL contains the last components
*         of all right singular vectors of the bidiagonal matrix.
*
*  VLW    (workspace) REAL array, dimension ( M )
*         Workspace for VL.
*
*  ALPHA  (input) REAL
*         Contains the diagonal element associated with the added row.
*
*  BETA   (input) REAL
*         Contains the off-diagonal element associated with the added
*         row.
*
*  DSIGMA (output) REAL array, dimension ( N )
*         Contains a copy of the diagonal elements (K-1 singular values
*         and one zero) in the secular equation.
*
*  IDX    (workspace) INTEGER array, dimension ( N )
*         This will contain the permutation used to sort the contents of
*         D into ascending order.
*
*  IDXP   (workspace) INTEGER array, dimension ( N )
*         This will contain the permutation used to place deflated
*         values of D at the end of the array. On output IDXP(2:K)
*         points to the nondeflated D-values and IDXP(K+1:N)
*         points to the deflated singular values.
*
*  IDXQ   (input) INTEGER array, dimension ( N )
*         This contains the permutation which separately sorts the two
*         sub-problems in D into ascending order.  Note that entries in
*         the first half of this permutation must first be moved one
*         position backward; and entries in the second half
*         must first have NL+1 added to their values.
*
*  PERM   (output) INTEGER array, dimension ( N )
*         The permutations (from deflation and sorting) to be applied
*         to each singular block. Not referenced if ICOMPQ = 0.
*
*  GIVPTR (output) INTEGER
*         The number of Givens rotations which took place in this
*         subproblem. Not referenced if ICOMPQ = 0.
*
*  GIVCOL (output) INTEGER array, dimension ( LDGCOL, 2 )
*         Each pair of numbers indicates a pair of columns to take place
*         in a Givens rotation. Not referenced if ICOMPQ = 0.
*
*  LDGCOL (input) INTEGER
*         The leading dimension of GIVCOL, must be at least N.
*
*  GIVNUM (output) REAL array, dimension ( LDGNUM, 2 )
*         Each number indicates the C or S value to be used in the
*         corresponding Givens rotation. Not referenced if ICOMPQ = 0.
*
*  LDGNUM (input) INTEGER
*         The leading dimension of GIVNUM, must be at least N.
*
*  C      (output) REAL
*         C contains garbage if SQRE =0 and the C-value of a Givens
*         rotation related to the right null space if SQRE = 1.
*
*  S      (output) REAL
*         S contains garbage if SQRE =0 and the S-value of a Givens
*         rotation related to the right null space if SQRE = 1.
*
*  INFO   (output) INTEGER
*         = 0:  successful exit.
*         < 0:  if INFO = -i, the i-th argument had an illegal value.
*
*  Further Details
*  ===============
*
*  Based on contributions by
*     Ming Gu and Huan Ren, Computer Science Division, University of
*     California at Berkeley, USA
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE, TWO, EIGHT
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0, TWO = 2.0E+0,
     $                   EIGHT = 8.0E+0 )
*     ..
*     .. Local Scalars ..
*
      INTEGER            I, IDXI, IDXJ, IDXJP, J, JP, JPREV, K2, M, N,
     $                   NLP1, NLP2
      REAL               EPS, HLFTOL, TAU, TOL, Z1
*     ..
*     .. External Subroutines ..
      EXTERNAL           SCOPY, SLAMRG, SROT, XERBLA
*     ..
*     .. External Functions ..
      REAL               SLAMCH, SLAPY2
      EXTERNAL           SLAMCH, SLAPY2
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABSMAX
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      N = NL + NR + 1
      M = N + SQRE
*
      IF( ( ICOMPQ.LT.0 ) .OR. ( ICOMPQ.GT.1 ) ) THEN
         INFO = -1
      ELSE IF( NL.LT.1 ) THEN
         INFO = -2
      ELSE IF( NR.LT.1 ) THEN
         INFO = -3
      ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN
         INFO = -4
      ELSE IF( LDGCOL.LT.N ) THEN
         INFO = -22
      ELSE IF( LDGNUM.LT.N ) THEN
         INFO = -24
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SLASD7'-INFO )
         RETURN
      END IF
*
      NLP1 = NL + 1
      NLP2 = NL + 2
      IF( ICOMPQ.EQ.1 ) THEN
         GIVPTR = 0
      END IF
*
*     Generate the first part of the vector Z and move the singular
*     values in the first part of D one position backward.
*
      Z1 = ALPHA*VL( NLP1 )
      VL( NLP1 ) = ZERO
      TAU = VF( NLP1 )
      DO 10 I = NL, 1-1
         Z( I+1 ) = ALPHA*VL( I )
         VL( I ) = ZERO
         VF( I+1 ) = VF( I )
         D( I+1 ) = D( I )
         IDXQ( I+1 ) = IDXQ( I ) + 1
   10 CONTINUE
      VF( 1 ) = TAU
*
*     Generate the second part of the vector Z.
*
      DO 20 I = NLP2, M
         Z( I ) = BETA*VF( I )
         VF( I ) = ZERO
   20 CONTINUE
*
*     Sort the singular values into increasing order
*
      DO 30 I = NLP2, N
         IDXQ( I ) = IDXQ( I ) + NLP1
   30 CONTINUE
*
*     DSIGMA, IDXC, IDXC, and ZW are used as storage space.
*
      DO 40 I = 2, N
         DSIGMA( I ) = D( IDXQ( I ) )
         ZW( I ) = Z( IDXQ( I ) )
         VFW( I ) = VF( IDXQ( I ) )
         VLW( I ) = VL( IDXQ( I ) )
   40 CONTINUE
*
      CALL SLAMRG( NL, NR, DSIGMA( 2 ), 11, IDX( 2 ) )
*
      DO 50 I = 2, N
         IDXI = 1 + IDX( I )
         D( I ) = DSIGMA( IDXI )
         Z( I ) = ZW( IDXI )
         VF( I ) = VFW( IDXI )
         VL( I ) = VLW( IDXI )
   50 CONTINUE
*
*     Calculate the allowable deflation tolerence
*
      EPS = SLAMCH( 'Epsilon' )
      TOL = MAXABS( ALPHA ), ABS( BETA ) )
      TOL = EIGHT*EIGHT*EPS*MAXABS( D( N ) ), TOL )
*
*     There are 2 kinds of deflation -- first a value in the z-vector
*     is small, second two (or more) singular values are very close
*     together (their difference is small).
*
*     If the value in the z-vector is small, we simply permute the
*     array so that the corresponding singular value is moved to the
*     end.
*
*     If two values in the D-vector are close, we perform a two-sided
*     rotation designed to make one of the corresponding z-vector
*     entries zero, and then permute the array so that the deflated
*     singular value is moved to the end.
*
*     If there are multiple singular values then the problem deflates.
*     Here the number of equal singular values are found.  As each equal
*     singular value is found, an elementary reflector is computed to
*     rotate the corresponding singular subspace so that the
*     corresponding components of Z are zero in this new basis.
*
      K = 1
      K2 = N + 1
      DO 60 J = 2, N
         IFABS( Z( J ) ).LE.TOL ) THEN
*
*           Deflate due to small z component.
*
            K2 = K2 - 1
            IDXP( K2 ) = J
            IF( J.EQ.N )
     $         GO TO 100
         ELSE
            JPREV = J
            GO TO 70
         END IF
   60 CONTINUE
   70 CONTINUE
      J = JPREV
   80 CONTINUE
      J = J + 1
      IF( J.GT.N )
     $   GO TO 90
      IFABS( Z( J ) ).LE.TOL ) THEN
*
*        Deflate due to small z component.
*
         K2 = K2 - 1
         IDXP( K2 ) = J
      ELSE
*
*        Check if singular values are close enough to allow deflation.
*
         IFABS( D( J )-D( JPREV ) ).LE.TOL ) THEN
*
*           Deflation is possible.
*
            S = Z( JPREV )
            C = Z( J )
*
*           Find sqrt(a**2+b**2) without overflow or
*           destructive underflow.
*
            TAU = SLAPY2( C, S )
            Z( J ) = TAU
            Z( JPREV ) = ZERO
            C = C / TAU
            S = -/ TAU
*
*           Record the appropriate Givens rotation
*
            IF( ICOMPQ.EQ.1 ) THEN
               GIVPTR = GIVPTR + 1
               IDXJP = IDXQ( IDX( JPREV )+1 )
               IDXJ = IDXQ( IDX( J )+1 )
               IF( IDXJP.LE.NLP1 ) THEN
                  IDXJP = IDXJP - 1
               END IF
               IF( IDXJ.LE.NLP1 ) THEN
                  IDXJ = IDXJ - 1
               END IF
               GIVCOL( GIVPTR, 2 ) = IDXJP
               GIVCOL( GIVPTR, 1 ) = IDXJ
               GIVNUM( GIVPTR, 2 ) = C
               GIVNUM( GIVPTR, 1 ) = S
            END IF
            CALL SROT( 1, VF( JPREV ), 1, VF( J ), 1, C, S )
            CALL SROT( 1, VL( JPREV ), 1, VL( J ), 1, C, S )
            K2 = K2 - 1
            IDXP( K2 ) = JPREV
            JPREV = J
         ELSE
            K = K + 1
            ZW( K ) = Z( JPREV )
            DSIGMA( K ) = D( JPREV )
            IDXP( K ) = JPREV
            JPREV = J
         END IF
      END IF
      GO TO 80
   90 CONTINUE
*
*     Record the last singular value.
*
      K = K + 1
      ZW( K ) = Z( JPREV )
      DSIGMA( K ) = D( JPREV )
      IDXP( K ) = JPREV
*
  100 CONTINUE
*
*     Sort the singular values into DSIGMA. The singular values which
*     were not deflated go into the first K slots of DSIGMA, except
*     that DSIGMA(1) is treated separately.
*
      DO 110 J = 2, N
         JP = IDXP( J )
         DSIGMA( J ) = D( JP )
         VFW( J ) = VF( JP )
         VLW( J ) = VL( JP )
  110 CONTINUE
      IF( ICOMPQ.EQ.1 ) THEN
         DO 120 J = 2, N
            JP = IDXP( J )
            PERM( J ) = IDXQ( IDX( JP )+1 )
            IF( PERM( J ).LE.NLP1 ) THEN
               PERM( J ) = PERM( J ) - 1
            END IF
  120    CONTINUE
      END IF
*
*     The deflated singular values go back into the last N - K slots of
*     D.
*
      CALL SCOPY( N-K, DSIGMA( K+1 ), 1, D( K+1 ), 1 )
*
*     Determine DSIGMA(1), DSIGMA(2), Z(1), VF(1), VL(1), VF(M), and
*     VL(M).
*
      DSIGMA( 1 ) = ZERO
      HLFTOL = TOL / TWO
      IFABS( DSIGMA( 2 ) ).LE.HLFTOL )
     $   DSIGMA( 2 ) = HLFTOL
      IF( M.GT.N ) THEN
         Z( 1 ) = SLAPY2( Z1, Z( M ) )
         IF( Z( 1 ).LE.TOL ) THEN
            C = ONE
            S = ZERO
            Z( 1 ) = TOL
         ELSE
            C = Z1 / Z( 1 )
            S = -Z( M ) / Z( 1 )
         END IF
         CALL SROT( 1, VF( M ), 1, VF( 1 ), 1, C, S )
         CALL SROT( 1, VL( M ), 1, VL( 1 ), 1, C, S )
      ELSE
         IFABS( Z1 ).LE.TOL ) THEN
            Z( 1 ) = TOL
         ELSE
            Z( 1 ) = Z1
         END IF
      END IF
*
*     Restore Z, VF, and VL.
*
      CALL SCOPY( K-1, ZW( 2 ), 1, Z( 2 ), 1 )
      CALL SCOPY( N-1, VFW( 2 ), 1, VF( 2 ), 1 )
      CALL SCOPY( N-1, VLW( 2 ), 1, VL( 2 ), 1 )
*
      RETURN
*
*     End of SLASD7
*
      END