1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
     225
     226
     227
     228
     229
     230
     231
     232
     233
     234
     235
     236
     237
     238
     239
     240
     241
     242
     243
     244
     245
     246
     247
     248
     249
     250
     251
     252
     253
     254
     255
     256
     257
     258
     259
     260
     261
     262
     263
     264
     265
     266
     267
     268
     269
     270
     271
     272
     273
     274
     275
     276
     277
     278
     279
     280
     281
     282
     283
     284
     285
     286
     287
     288
     289
     290
     291
     292
     293
     294
     295
     296
     297
     298
     299
     300
     301
     302
     303
     304
     305
     306
     307
     308
     309
     310
     311
     312
     313
     314
     315
     316
     317
     318
     319
     320
     321
     322
     323
     324
     325
     326
     327
     328
     329
     330
     331
     332
     333
     334
     335
     336
     337
     338
     339
     340
     341
     342
     343
     344
     345
     346
     347
     348
     349
     350
     351
     352
     353
     354
     355
     356
     357
     358
     359
     360
     361
     362
     363
     364
     365
     366
     367
     368
     369
     370
     371
     372
     373
     374
     375
     376
     377
     378
     379
     380
     381
     382
     383
     384
     385
     386
     387
     388
     389
     390
      SUBROUTINE SLASDA( ICOMPQ, SMLSIZ, N, SQRE, D, E, U, LDU, VT, K,
     $                   DIFL, DIFR, Z, POLES, GIVPTR, GIVCOL, LDGCOL,
     $                   PERM, GIVNUM, C, S, WORK, IWORK, INFO )
*
*  -- LAPACK auxiliary routine (version 3.2.2) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     June 2010
*
*     .. Scalar Arguments ..
      INTEGER            ICOMPQ, INFO, LDGCOL, LDU, N, SMLSIZ, SQRE
*     ..
*     .. Array Arguments ..
      INTEGER            GIVCOL( LDGCOL, * ), GIVPTR( * ), IWORK( * ),
     $                   K( * ), PERM( LDGCOL, * )
      REAL               C( * ), D( * ), DIFL( LDU, * ), DIFR( LDU, * ),
     $                   E( * ), GIVNUM( LDU, * ), POLES( LDU, * ),
     $                   S( * ), U( LDU, * ), VT( LDU, * ), WORK( * ),
     $                   Z( LDU, * )
*     ..
*
*  Purpose
*  =======
*
*  Using a divide and conquer approach, SLASDA computes the singular
*  value decomposition (SVD) of a real upper bidiagonal N-by-M matrix
*  B with diagonal D and offdiagonal E, where M = N + SQRE. The
*  algorithm computes the singular values in the SVD B = U * S * VT.
*  The orthogonal matrices U and VT are optionally computed in
*  compact form.
*
*  A related subroutine, SLASD0, computes the singular values and
*  the singular vectors in explicit form.
*
*  Arguments
*  =========
*
*  ICOMPQ (input) INTEGER
*         Specifies whether singular vectors are to be computed
*         in compact form, as follows
*         = 0: Compute singular values only.
*         = 1: Compute singular vectors of upper bidiagonal
*              matrix in compact form.
*
*  SMLSIZ (input) INTEGER
*         The maximum size of the subproblems at the bottom of the
*         computation tree.
*
*  N      (input) INTEGER
*         The row dimension of the upper bidiagonal matrix. This is
*         also the dimension of the main diagonal array D.
*
*  SQRE   (input) INTEGER
*         Specifies the column dimension of the bidiagonal matrix.
*         = 0: The bidiagonal matrix has column dimension M = N;
*         = 1: The bidiagonal matrix has column dimension M = N + 1.
*
*  D      (input/output) REAL array, dimension ( N )
*         On entry D contains the main diagonal of the bidiagonal
*         matrix. On exit D, if INFO = 0, contains its singular values.
*
*  E      (input) REAL array, dimension ( M-1 )
*         Contains the subdiagonal entries of the bidiagonal matrix.
*         On exit, E has been destroyed.
*
*  U      (output) REAL array,
*         dimension ( LDU, SMLSIZ ) if ICOMPQ = 1, and not referenced
*         if ICOMPQ = 0. If ICOMPQ = 1, on exit, U contains the left
*         singular vector matrices of all subproblems at the bottom
*         level.
*
*  LDU    (input) INTEGER, LDU = > N.
*         The leading dimension of arrays U, VT, DIFL, DIFR, POLES,
*         GIVNUM, and Z.
*
*  VT     (output) REAL array,
*         dimension ( LDU, SMLSIZ+1 ) if ICOMPQ = 1, and not referenced
*         if ICOMPQ = 0. If ICOMPQ = 1, on exit, VT**T contains the right
*         singular vector matrices of all subproblems at the bottom
*         level.
*
*  K      (output) INTEGER array, dimension ( N ) 
*         if ICOMPQ = 1 and dimension 1 if ICOMPQ = 0.
*         If ICOMPQ = 1, on exit, K(I) is the dimension of the I-th
*         secular equation on the computation tree.
*
*  DIFL   (output) REAL array, dimension ( LDU, NLVL ),
*         where NLVL = floor(log_2 (N/SMLSIZ))).
*
*  DIFR   (output) REAL array,
*                  dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1 and
*                  dimension ( N ) if ICOMPQ = 0.
*         If ICOMPQ = 1, on exit, DIFL(1:N, I) and DIFR(1:N, 2 * I - 1)
*         record distances between singular values on the I-th
*         level and singular values on the (I -1)-th level, and
*         DIFR(1:N, 2 * I ) contains the normalizing factors for
*         the right singular vector matrix. See SLASD8 for details.
*
*  Z      (output) REAL array,
*                  dimension ( LDU, NLVL ) if ICOMPQ = 1 and
*                  dimension ( N ) if ICOMPQ = 0.
*         The first K elements of Z(1, I) contain the components of
*         the deflation-adjusted updating row vector for subproblems
*         on the I-th level.
*
*  POLES  (output) REAL array,
*         dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1, and not referenced
*         if ICOMPQ = 0. If ICOMPQ = 1, on exit, POLES(1, 2*I - 1) and
*         POLES(1, 2*I) contain  the new and old singular values
*         involved in the secular equations on the I-th level.
*
*  GIVPTR (output) INTEGER array,
*         dimension ( N ) if ICOMPQ = 1, and not referenced if
*         ICOMPQ = 0. If ICOMPQ = 1, on exit, GIVPTR( I ) records
*         the number of Givens rotations performed on the I-th
*         problem on the computation tree.
*
*  GIVCOL (output) INTEGER array,
*         dimension ( LDGCOL, 2 * NLVL ) if ICOMPQ = 1, and not
*         referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I,
*         GIVCOL(1, 2 *I - 1) and GIVCOL(1, 2 *I) record the locations
*         of Givens rotations performed on the I-th level on the
*         computation tree.
*
*  LDGCOL (input) INTEGER, LDGCOL = > N.
*         The leading dimension of arrays GIVCOL and PERM.
*
*  PERM   (output) INTEGER array, dimension ( LDGCOL, NLVL ) 
*         if ICOMPQ = 1, and not referenced
*         if ICOMPQ = 0. If ICOMPQ = 1, on exit, PERM(1, I) records
*         permutations done on the I-th level of the computation tree.
*
*  GIVNUM (output) REAL array,
*         dimension ( LDU,  2 * NLVL ) if ICOMPQ = 1, and not
*         referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I,
*         GIVNUM(1, 2 *I - 1) and GIVNUM(1, 2 *I) record the C- and S-
*         values of Givens rotations performed on the I-th level on
*         the computation tree.
*
*  C      (output) REAL array,
*         dimension ( N ) if ICOMPQ = 1, and dimension 1 if ICOMPQ = 0.
*         If ICOMPQ = 1 and the I-th subproblem is not square, on exit,
*         C( I ) contains the C-value of a Givens rotation related to
*         the right null space of the I-th subproblem.
*
*  S      (output) REAL array, dimension ( N ) if
*         ICOMPQ = 1, and dimension 1 if ICOMPQ = 0. If ICOMPQ = 1
*         and the I-th subproblem is not square, on exit, S( I )
*         contains the S-value of a Givens rotation related to
*         the right null space of the I-th subproblem.
*
*  WORK   (workspace) REAL array, dimension
*         (6 * N + (SMLSIZ + 1)*(SMLSIZ + 1)).
*
*  IWORK  (workspace) INTEGER array, dimension (7*N).
*
*  INFO   (output) INTEGER
*          = 0:  successful exit.
*          < 0:  if INFO = -i, the i-th argument had an illegal value.
*          > 0:  if INFO = 1, a singular value did not converge
*
*  Further Details
*  ===============
*
*  Based on contributions by
*     Ming Gu and Huan Ren, Computer Science Division, University of
*     California at Berkeley, USA
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, I1, IC, IDXQ, IDXQI, IM1, INODE, ITEMP, IWK,
     $                   J, LF, LL, LVL, LVL2, M, NCC, ND, NDB1, NDIML,
     $                   NDIMR, NL, NLF, NLP1, NLVL, NR, NRF, NRP1, NRU,
     $                   NWORK1, NWORK2, SMLSZP, SQREI, VF, VFI, VL, VLI
      REAL               ALPHA, BETA
*     ..
*     .. External Subroutines ..
      EXTERNAL           SCOPY, SLASD6, SLASDQ, SLASDT, SLASET, XERBLA
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
*
      IF( ( ICOMPQ.LT.0 ) .OR. ( ICOMPQ.GT.1 ) ) THEN
         INFO = -1
      ELSE IF( SMLSIZ.LT.3 ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN
         INFO = -4
      ELSE IF( LDU.LT.( N+SQRE ) ) THEN
         INFO = -8
      ELSE IF( LDGCOL.LT.N ) THEN
         INFO = -17
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SLASDA'-INFO )
         RETURN
      END IF
*
      M = N + SQRE
*
*     If the input matrix is too small, call SLASDQ to find the SVD.
*
      IF( N.LE.SMLSIZ ) THEN
         IF( ICOMPQ.EQ.0 ) THEN
            CALL SLASDQ( 'U', SQRE, N, 000, D, E, VT, LDU, U, LDU,
     $                   U, LDU, WORK, INFO )
         ELSE
            CALL SLASDQ( 'U', SQRE, N, M, N, 0, D, E, VT, LDU, U, LDU,
     $                   U, LDU, WORK, INFO )
         END IF
         RETURN
      END IF
*
*     Book-keeping and  set up the computation tree.
*
      INODE = 1
      NDIML = INODE + N
      NDIMR = NDIML + N
      IDXQ = NDIMR + N
      IWK = IDXQ + N
*
      NCC = 0
      NRU = 0
*
      SMLSZP = SMLSIZ + 1
      VF = 1
      VL = VF + M
      NWORK1 = VL + M
      NWORK2 = NWORK1 + SMLSZP*SMLSZP
*
      CALL SLASDT( N, NLVL, ND, IWORK( INODE ), IWORK( NDIML ),
     $             IWORK( NDIMR ), SMLSIZ )
*
*     for the nodes on bottom level of the tree, solve
*     their subproblems by SLASDQ.
*
      NDB1 = ( ND+1 ) / 2
      DO 30 I = NDB1, ND
*
*        IC : center row of each node
*        NL : number of rows of left  subproblem
*        NR : number of rows of right subproblem
*        NLF: starting row of the left   subproblem
*        NRF: starting row of the right  subproblem
*
         I1 = I - 1
         IC = IWORK( INODE+I1 )
         NL = IWORK( NDIML+I1 )
         NLP1 = NL + 1
         NR = IWORK( NDIMR+I1 )
         NLF = IC - NL
         NRF = IC + 1
         IDXQI = IDXQ + NLF - 2
         VFI = VF + NLF - 1
         VLI = VL + NLF - 1
         SQREI = 1
         IF( ICOMPQ.EQ.0 ) THEN
            CALL SLASET( 'A', NLP1, NLP1, ZERO, ONE, WORK( NWORK1 ),
     $                   SMLSZP )
            CALL SLASDQ( 'U', SQREI, NL, NLP1, NRU, NCC, D( NLF ),
     $                   E( NLF ), WORK( NWORK1 ), SMLSZP,
     $                   WORK( NWORK2 ), NL, WORK( NWORK2 ), NL,
     $                   WORK( NWORK2 ), INFO )
            ITEMP = NWORK1 + NL*SMLSZP
            CALL SCOPY( NLP1, WORK( NWORK1 ), 1, WORK( VFI ), 1 )
            CALL SCOPY( NLP1, WORK( ITEMP ), 1, WORK( VLI ), 1 )
         ELSE
            CALL SLASET( 'A', NL, NL, ZERO, ONE, U( NLF, 1 ), LDU )
            CALL SLASET( 'A', NLP1, NLP1, ZERO, ONE, VT( NLF, 1 ), LDU )
            CALL SLASDQ( 'U', SQREI, NL, NLP1, NL, NCC, D( NLF ),
     $                   E( NLF ), VT( NLF, 1 ), LDU, U( NLF, 1 ), LDU,
     $                   U( NLF, 1 ), LDU, WORK( NWORK1 ), INFO )
            CALL SCOPY( NLP1, VT( NLF, 1 ), 1, WORK( VFI ), 1 )
            CALL SCOPY( NLP1, VT( NLF, NLP1 ), 1, WORK( VLI ), 1 )
         END IF
         IF( INFO.NE.0 ) THEN
            RETURN
         END IF
         DO 10 J = 1, NL
            IWORK( IDXQI+J ) = J
   10    CONTINUE
         IF( ( I.EQ.ND ) .AND. ( SQRE.EQ.0 ) ) THEN
            SQREI = 0
         ELSE
            SQREI = 1
         END IF
         IDXQI = IDXQI + NLP1
         VFI = VFI + NLP1
         VLI = VLI + NLP1
         NRP1 = NR + SQREI
         IF( ICOMPQ.EQ.0 ) THEN
            CALL SLASET( 'A', NRP1, NRP1, ZERO, ONE, WORK( NWORK1 ),
     $                   SMLSZP )
            CALL SLASDQ( 'U', SQREI, NR, NRP1, NRU, NCC, D( NRF ),
     $                   E( NRF ), WORK( NWORK1 ), SMLSZP,
     $                   WORK( NWORK2 ), NR, WORK( NWORK2 ), NR,
     $                   WORK( NWORK2 ), INFO )
            ITEMP = NWORK1 + ( NRP1-1 )*SMLSZP
            CALL SCOPY( NRP1, WORK( NWORK1 ), 1, WORK( VFI ), 1 )
            CALL SCOPY( NRP1, WORK( ITEMP ), 1, WORK( VLI ), 1 )
         ELSE
            CALL SLASET( 'A', NR, NR, ZERO, ONE, U( NRF, 1 ), LDU )
            CALL SLASET( 'A', NRP1, NRP1, ZERO, ONE, VT( NRF, 1 ), LDU )
            CALL SLASDQ( 'U', SQREI, NR, NRP1, NR, NCC, D( NRF ),
     $                   E( NRF ), VT( NRF, 1 ), LDU, U( NRF, 1 ), LDU,
     $                   U( NRF, 1 ), LDU, WORK( NWORK1 ), INFO )
            CALL SCOPY( NRP1, VT( NRF, 1 ), 1, WORK( VFI ), 1 )
            CALL SCOPY( NRP1, VT( NRF, NRP1 ), 1, WORK( VLI ), 1 )
         END IF
         IF( INFO.NE.0 ) THEN
            RETURN
         END IF
         DO 20 J = 1, NR
            IWORK( IDXQI+J ) = J
   20    CONTINUE
   30 CONTINUE
*
*     Now conquer each subproblem bottom-up.
*
      J = 2**NLVL
      DO 50 LVL = NLVL, 1-1
         LVL2 = LVL*2 - 1
*
*        Find the first node LF and last node LL on
*        the current level LVL.
*
         IF( LVL.EQ.1 ) THEN
            LF = 1
            LL = 1
         ELSE
            LF = 2**( LVL-1 )
            LL = 2*LF - 1
         END IF
         DO 40 I = LF, LL
            IM1 = I - 1
            IC = IWORK( INODE+IM1 )
            NL = IWORK( NDIML+IM1 )
            NR = IWORK( NDIMR+IM1 )
            NLF = IC - NL
            NRF = IC + 1
            IF( I.EQ.LL ) THEN
               SQREI = SQRE
            ELSE
               SQREI = 1
            END IF
            VFI = VF + NLF - 1
            VLI = VL + NLF - 1
            IDXQI = IDXQ + NLF - 1
            ALPHA = D( IC )
            BETA = E( IC )
            IF( ICOMPQ.EQ.0 ) THEN
               CALL SLASD6( ICOMPQ, NL, NR, SQREI, D( NLF ),
     $                      WORK( VFI ), WORK( VLI ), ALPHA, BETA,
     $                      IWORK( IDXQI ), PERM, GIVPTR( 1 ), GIVCOL,
     $                      LDGCOL, GIVNUM, LDU, POLES, DIFL, DIFR, Z,
     $                      K( 1 ), C( 1 ), S( 1 ), WORK( NWORK1 ),
     $                      IWORK( IWK ), INFO )
            ELSE
               J = J - 1
               CALL SLASD6( ICOMPQ, NL, NR, SQREI, D( NLF ),
     $                      WORK( VFI ), WORK( VLI ), ALPHA, BETA,
     $                      IWORK( IDXQI ), PERM( NLF, LVL ),
     $                      GIVPTR( J ), GIVCOL( NLF, LVL2 ), LDGCOL,
     $                      GIVNUM( NLF, LVL2 ), LDU,
     $                      POLES( NLF, LVL2 ), DIFL( NLF, LVL ),
     $                      DIFR( NLF, LVL2 ), Z( NLF, LVL ), K( J ),
     $                      C( J ), S( J ), WORK( NWORK1 ),
     $                      IWORK( IWK ), INFO )
            END IF
            IF( INFO.NE.0 ) THEN
               RETURN
            END IF
   40    CONTINUE
   50 CONTINUE
*
      RETURN
*
*     End of SLASDA
*
      END