1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
     225
     226
     227
     228
     229
     230
     231
     232
     233
     234
     235
     236
     237
     238
     239
     240
     241
     242
     243
     244
     245
     246
     247
     248
     249
     250
     251
     252
     253
     254
     255
     256
     257
     258
     259
     260
     261
     262
     263
     264
     265
     266
     267
     268
     269
     270
     271
     272
     273
     274
     275
     276
     277
     278
     279
     280
     281
     282
     283
     284
     285
     286
     287
     288
     289
     290
     291
     292
     293
     294
     295
     296
     297
     298
     299
     300
     301
     302
     303
     304
     305
     306
     307
     308
     309
     310
     311
     312
     313
     314
     315
     316
     317
     318
     319
     320
     321
     322
     323
     324
     325
     326
     327
     328
     329
     330
     331
     332
     333
     334
     335
     336
     337
     338
     339
     340
     341
     342
     343
     344
     345
     346
     347
     348
     349
     350
     351
     352
     353
     354
     355
     356
     357
     358
     359
     360
     361
     362
     363
     364
     365
     366
     367
     368
     369
     370
     371
     372
     373
     374
     375
     376
     377
     378
     379
     380
     381
     382
     383
     384
     385
     386
     387
     388
     389
     390
     391
     392
     393
     394
     395
     396
     397
     398
     399
     400
     401
     402
     403
     404
     405
     406
     407
     408
     409
     410
     411
     412
     413
     414
     415
     416
     417
     418
     419
     420
     421
     422
     423
     424
     425
     426
     427
     428
     429
     430
     431
     432
     433
     434
     435
     436
     437
     438
     439
     440
     441
     442
     443
     444
     445
     446
     447
     448
     449
     450
     451
     452
     453
     454
     455
     456
     457
     458
     459
     460
     461
     462
     463
     464
     465
     466
     467
     468
     469
     470
     471
     472
     473
     474
     475
     476
     477
     478
     479
     480
     481
     482
     483
     484
     485
     486
     487
     488
     489
     490
      SUBROUTINE SLASQ2( N, Z, INFO )
*
*  -- LAPACK routine (version 3.2)                                    --
*
*  -- Contributed by Osni Marques of the Lawrence Berkeley National   --
*  -- Laboratory and Beresford Parlett of the Univ. of California at  --
*  -- Berkeley                                                        --
*  -- November 2008                                                   --
*
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      INTEGER            INFO, N
*     ..
*     .. Array Arguments ..
      REAL               Z( * )
*     ..
*
*  Purpose
*  =======
*
*  SLASQ2 computes all the eigenvalues of the symmetric positive 
*  definite tridiagonal matrix associated with the qd array Z to high
*  relative accuracy are computed to high relative accuracy, in the
*  absence of denormalization, underflow and overflow.
*
*  To see the relation of Z to the tridiagonal matrix, let L be a
*  unit lower bidiagonal matrix with subdiagonals Z(2,4,6,,..) and
*  let U be an upper bidiagonal matrix with 1's above and diagonal
*  Z(1,3,5,,..). The tridiagonal is L*U or, if you prefer, the
*  symmetric tridiagonal to which it is similar.
*
*  Note : SLASQ2 defines a logical variable, IEEE, which is true
*  on machines which follow ieee-754 floating-point standard in their
*  handling of infinities and NaNs, and false otherwise. This variable
*  is passed to SLASQ3.
*
*  Arguments
*  =========
*
*  N     (input) INTEGER
*        The number of rows and columns in the matrix. N >= 0.
*
*  Z     (input/output) REAL array, dimension ( 4*N )
*        On entry Z holds the qd array. On exit, entries 1 to N hold
*        the eigenvalues in decreasing order, Z( 2*N+1 ) holds the
*        trace, and Z( 2*N+2 ) holds the sum of the eigenvalues. If
*        N > 2, then Z( 2*N+3 ) holds the iteration count, Z( 2*N+4 )
*        holds NDIVS/NIN^2, and Z( 2*N+5 ) holds the percentage of
*        shifts that failed.
*
*  INFO  (output) INTEGER
*        = 0: successful exit
*        < 0: if the i-th argument is a scalar and had an illegal
*             value, then INFO = -i, if the i-th argument is an
*             array and the j-entry had an illegal value, then
*             INFO = -(i*100+j)
*        > 0: the algorithm failed
*              = 1, a split was marked by a positive value in E
*              = 2, current block of Z not diagonalized after 30*N
*                   iterations (in inner while loop)
*              = 3, termination criterion of outer while loop not met 
*                   (program created more than N unreduced blocks)
*
*  Further Details
*  ===============
*  Local Variables: I0:N0 defines a current unreduced segment of Z.
*  The shifts are accumulated in SIGMA. Iteration count is in ITER.
*  Ping-pong is controlled by PP (alternates between 0 and 1).
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               CBIAS
      PARAMETER          ( CBIAS = 1.50E0 )
      REAL               ZERO, HALF, ONE, TWO, FOUR, HUNDRD
      PARAMETER          ( ZERO = 0.0E0, HALF = 0.5E0, ONE = 1.0E0,
     $                     TWO = 2.0E0, FOUR = 4.0E0, HUNDRD = 100.0E0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            IEEE
      INTEGER            I0, I4, IINFO, IPN4, ITER, IWHILA, IWHILB, K,
     $                   KMIN, N0, NBIG, NDIV, NFAIL, PP, SPLT, TTYPE
      REAL               D, DEE, DEEMIN, DESIG, DMIN, DMIN1, DMIN2, DN,
     $                   DN1, DN2, E, EMAX, EMIN, EPS, G, OLDEMN, QMAX,
     $                   QMIN, S, SAFMIN, SIGMA, T, TAU, TEMP, TOL,
     $                   TOL2, TRACE, ZMAX
*     ..
*     .. External Subroutines ..
      EXTERNAL           SLASQ3, SLASRT, XERBLA
*     ..
*     .. External Functions ..
      INTEGER            ILAENV
      REAL               SLAMCH
      EXTERNAL           ILAENV, SLAMCH
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABSMAXMIN, REAL, SQRT
*     ..
*     .. Executable Statements ..
*      
*     Test the input arguments.
*     (in case SLASQ2 is not called by SLASQ1)
*
      INFO = 0
      EPS = SLAMCH( 'Precision' )
      SAFMIN = SLAMCH( 'Safe minimum' )
      TOL = EPS*HUNDRD
      TOL2 = TOL**2
*
      IF( N.LT.0 ) THEN
         INFO = -1
         CALL XERBLA( 'SLASQ2'1 )
         RETURN
      ELSE IF( N.EQ.0 ) THEN
         RETURN
      ELSE IF( N.EQ.1 ) THEN
*
*        1-by-1 case.
*
         IF( Z( 1 ).LT.ZERO ) THEN
            INFO = -201
            CALL XERBLA( 'SLASQ2'2 )
         END IF
         RETURN
      ELSE IF( N.EQ.2 ) THEN
*
*        2-by-2 case.
*
         IF( Z( 2 ).LT.ZERO .OR. Z( 3 ).LT.ZERO ) THEN
            INFO = -2
            CALL XERBLA( 'SLASQ2'2 )
            RETURN
         ELSE IF( Z( 3 ).GT.Z( 1 ) ) THEN
            D = Z( 3 )
            Z( 3 ) = Z( 1 )
            Z( 1 ) = D
         END IF
         Z( 5 ) = Z( 1 ) + Z( 2 ) + Z( 3 )
         IF( Z( 2 ).GT.Z( 3 )*TOL2 ) THEN
            T = HALF*( ( Z( 1 )-Z( 3 ) )+Z( 2 ) ) 
            S = Z( 3 )*( Z( 2 ) / T )
            IF( S.LE.T ) THEN
               S = Z( 3 )*( Z( 2 ) / ( T*( ONE+SQRT( ONE+/ T ) ) ) )
            ELSE
               S = Z( 3 )*( Z( 2 ) / ( T+SQRT( T )*SQRT( T+S ) ) )
            END IF
            T = Z( 1 ) + ( S+Z( 2 ) )
            Z( 3 ) = Z( 3 )*( Z( 1 ) / T )
            Z( 1 ) = T
         END IF
         Z( 2 ) = Z( 3 )
         Z( 6 ) = Z( 2 ) + Z( 1 )
         RETURN
      END IF
*
*     Check for negative data and compute sums of q's and e's.
*
      Z( 2*N ) = ZERO
      EMIN = Z( 2 )
      QMAX = ZERO
      ZMAX = ZERO
      D = ZERO
      E = ZERO
*
      DO 10 K = 12*( N-1 ), 2
         IF( Z( K ).LT.ZERO ) THEN
            INFO = -200+K )
            CALL XERBLA( 'SLASQ2'2 )
            RETURN
         ELSE IF( Z( K+1 ).LT.ZERO ) THEN
            INFO = -200+K+1 )
            CALL XERBLA( 'SLASQ2'2 )
            RETURN
         END IF
         D = D + Z( K )
         E = E + Z( K+1 )
         QMAX = MAX( QMAX, Z( K ) )
         EMIN = MIN( EMIN, Z( K+1 ) )
         ZMAX = MAX( QMAX, ZMAX, Z( K+1 ) )
   10 CONTINUE
      IF( Z( 2*N-1 ).LT.ZERO ) THEN
         INFO = -200+2*N-1 )
         CALL XERBLA( 'SLASQ2'2 )
         RETURN
      END IF
      D = D + Z( 2*N-1 )
      QMAX = MAX( QMAX, Z( 2*N-1 ) )
      ZMAX = MAX( QMAX, ZMAX )
*
*     Check for diagonality.
*
      IF( E.EQ.ZERO ) THEN
         DO 20 K = 2, N
            Z( K ) = Z( 2*K-1 )
   20    CONTINUE
         CALL SLASRT( 'D', N, Z, IINFO )
         Z( 2*N-1 ) = D
         RETURN
      END IF
*
      TRACE = D + E
*
*     Check for zero data.
*
      IF( TRACE.EQ.ZERO ) THEN
         Z( 2*N-1 ) = ZERO
         RETURN
      END IF
*         
*     Check whether the machine is IEEE conformable.
*         
*     IEEE = ILAENV( 10, 'SLASQ2', 'N', 1, 2, 3, 4 ).EQ.1 .AND.
*    $       ILAENV( 11, 'SLASQ2', 'N', 1, 2, 3, 4 ).EQ.1      
*
*     [11/15/2008] The case IEEE=.TRUE. has a problem in single precision with
*     some the test matrices of type 16. The double precision code is fine.
*
      IEEE = .FALSE.
*         
*     Rearrange data for locality: Z=(q1,qq1,e1,ee1,q2,qq2,e2,ee2,...).
*
      DO 30 K = 2*N, 2-2
         Z( 2*K ) = ZERO 
         Z( 2*K-1 ) = Z( K ) 
         Z( 2*K-2 ) = ZERO 
         Z( 2*K-3 ) = Z( K-1 ) 
   30 CONTINUE
*
      I0 = 1
      N0 = N
*
*     Reverse the qd-array, if warranted.
*
      IF( CBIAS*Z( 4*I0-3 ).LT.Z( 4*N0-3 ) ) THEN
         IPN4 = 4*( I0+N0 )
         DO 40 I4 = 4*I0, 2*( I0+N0-1 ), 4
            TEMP = Z( I4-3 )
            Z( I4-3 ) = Z( IPN4-I4-3 )
            Z( IPN4-I4-3 ) = TEMP
            TEMP = Z( I4-1 )
            Z( I4-1 ) = Z( IPN4-I4-5 )
            Z( IPN4-I4-5 ) = TEMP
   40    CONTINUE
      END IF
*
*     Initial split checking via dqd and Li's test.
*
      PP = 0
*
      DO 80 K = 12
*
         D = Z( 4*N0+PP-3 )
         DO 50 I4 = 4*( N0-1 ) + PP, 4*I0 + PP, -4
            IF( Z( I4-1 ).LE.TOL2*D ) THEN
               Z( I4-1 ) = -ZERO
               D = Z( I4-3 )
            ELSE
               D = Z( I4-3 )*( D / ( D+Z( I4-1 ) ) )
            END IF
   50    CONTINUE
*
*        dqd maps Z to ZZ plus Li's test.
*
         EMIN = Z( 4*I0+PP+1 )
         D = Z( 4*I0+PP-3 )
         DO 60 I4 = 4*I0 + PP, 4*( N0-1 ) + PP, 4
            Z( I4-2*PP-2 ) = D + Z( I4-1 )
            IF( Z( I4-1 ).LE.TOL2*D ) THEN
               Z( I4-1 ) = -ZERO
               Z( I4-2*PP-2 ) = D
               Z( I4-2*PP ) = ZERO
               D = Z( I4+1 )
            ELSE IF( SAFMIN*Z( I4+1 ).LT.Z( I4-2*PP-2 ) .AND.
     $               SAFMIN*Z( I4-2*PP-2 ).LT.Z( I4+1 ) ) THEN
               TEMP = Z( I4+1 ) / Z( I4-2*PP-2 )
               Z( I4-2*PP ) = Z( I4-1 )*TEMP
               D = D*TEMP
            ELSE
               Z( I4-2*PP ) = Z( I4+1 )*( Z( I4-1 ) / Z( I4-2*PP-2 ) )
               D = Z( I4+1 )*( D / Z( I4-2*PP-2 ) )
            END IF
            EMIN = MIN( EMIN, Z( I4-2*PP ) )
   60    CONTINUE 
         Z( 4*N0-PP-2 ) = D
*
*        Now find qmax.
*
         QMAX = Z( 4*I0-PP-2 )
         DO 70 I4 = 4*I0 - PP + 24*N0 - PP - 24
            QMAX = MAX( QMAX, Z( I4 ) )
   70    CONTINUE
*
*        Prepare for the next iteration on K.
*
         PP = 1 - PP
   80 CONTINUE
*
*     Initialise variables to pass to SLASQ3.
*
      TTYPE = 0
      DMIN1 = ZERO
      DMIN2 = ZERO
      DN    = ZERO
      DN1   = ZERO
      DN2   = ZERO
      G     = ZERO
      TAU   = ZERO
*
      ITER = 2
      NFAIL = 0
      NDIV = 2*( N0-I0 )
*
      DO 160 IWHILA = 1, N + 1
         IF( N0.LT.1 ) 
     $      GO TO 170
*
*        While array unfinished do 
*
*        E(N0) holds the value of SIGMA when submatrix in I0:N0
*        splits from the rest of the array, but is negated.
*      
         DESIG = ZERO
         IF( N0.EQ.N ) THEN
            SIGMA = ZERO
         ELSE
            SIGMA = -Z( 4*N0-1 )
         END IF
         IF( SIGMA.LT.ZERO ) THEN
            INFO = 1
            RETURN
         END IF
*
*        Find last unreduced submatrix's top index I0, find QMAX and
*        EMIN. Find Gershgorin-type bound if Q's much greater than E's.
*
         EMAX = ZERO 
         IF( N0.GT.I0 ) THEN
            EMIN = ABS( Z( 4*N0-5 ) )
         ELSE
            EMIN = ZERO
         END IF
         QMIN = Z( 4*N0-3 )
         QMAX = QMIN
         DO 90 I4 = 4*N0, 8-4
            IF( Z( I4-5 ).LE.ZERO )
     $         GO TO 100
            IF( QMIN.GE.FOUR*EMAX ) THEN
               QMIN = MIN( QMIN, Z( I4-3 ) )
               EMAX = MAX( EMAX, Z( I4-5 ) )
            END IF
            QMAX = MAX( QMAX, Z( I4-7 )+Z( I4-5 ) )
            EMIN = MIN( EMIN, Z( I4-5 ) )
   90    CONTINUE
         I4 = 4 
*
  100    CONTINUE
         I0 = I4 / 4
         PP = 0
*
         IF( N0-I0.GT.1 ) THEN
            DEE = Z( 4*I0-3 )
            DEEMIN = DEE
            KMIN = I0
            DO 110 I4 = 4*I0+14*N0-34
               DEE = Z( I4 )*( DEE /( DEE+Z( I4-2 ) ) )
               IF( DEE.LE.DEEMIN ) THEN
                  DEEMIN = DEE
                  KMIN = ( I4+3 )/4
               END IF
  110       CONTINUE
            IF( (KMIN-I0)*2.LT.N0-KMIN .AND. 
     $         DEEMIN.LE.HALF*Z(4*N0-3) ) THEN
               IPN4 = 4*( I0+N0 )
               PP = 2
               DO 120 I4 = 4*I0, 2*( I0+N0-1 ), 4
                  TEMP = Z( I4-3 )
                  Z( I4-3 ) = Z( IPN4-I4-3 )
                  Z( IPN4-I4-3 ) = TEMP
                  TEMP = Z( I4-2 )
                  Z( I4-2 ) = Z( IPN4-I4-2 )
                  Z( IPN4-I4-2 ) = TEMP
                  TEMP = Z( I4-1 )
                  Z( I4-1 ) = Z( IPN4-I4-5 )
                  Z( IPN4-I4-5 ) = TEMP
                  TEMP = Z( I4 )
                  Z( I4 ) = Z( IPN4-I4-4 )
                  Z( IPN4-I4-4 ) = TEMP
  120          CONTINUE
            END IF
         END IF
*
*        Put -(initial shift) into DMIN.
*
         DMIN = -MAX( ZERO, QMIN-TWO*SQRT( QMIN )*SQRT( EMAX ) )
*
*        Now I0:N0 is unreduced. 
*        PP = 0 for ping, PP = 1 for pong.
*        PP = 2 indicates that flipping was applied to the Z array and
*               and that the tests for deflation upon entry in SLASQ3 
*               should not be performed.
*
         NBIG = 30*( N0-I0+1 )
         DO 140 IWHILB = 1, NBIG
            IF( I0.GT.N0 ) 
     $         GO TO 150
*
*           While submatrix unfinished take a good dqds step.
*
            CALL SLASQ3( I0, N0, Z, PP, DMIN, SIGMA, DESIG, QMAX, NFAIL,
     $                   ITER, NDIV, IEEE, TTYPE, DMIN1, DMIN2, DN, DN1,
     $                   DN2, G, TAU )
*
            PP = 1 - PP
*
*           When EMIN is very small check for splits.
*
            IF( PP.EQ.0 .AND. N0-I0.GE.3 ) THEN
               IF( Z( 4*N0 ).LE.TOL2*QMAX .OR.
     $             Z( 4*N0-1 ).LE.TOL2*SIGMA ) THEN
                  SPLT = I0 - 1
                  QMAX = Z( 4*I0-3 )
                  EMIN = Z( 4*I0-1 )
                  OLDEMN = Z( 4*I0 )
                  DO 130 I4 = 4*I0, 4*( N0-3 ), 4
                     IF( Z( I4 ).LE.TOL2*Z( I4-3 ) .OR.
     $                   Z( I4-1 ).LE.TOL2*SIGMA ) THEN
                        Z( I4-1 ) = -SIGMA
                        SPLT = I4 / 4
                        QMAX = ZERO
                        EMIN = Z( I4+3 )
                        OLDEMN = Z( I4+4 )
                     ELSE
                        QMAX = MAX( QMAX, Z( I4+1 ) )
                        EMIN = MIN( EMIN, Z( I4-1 ) )
                        OLDEMN = MIN( OLDEMN, Z( I4 ) )
                     END IF
  130             CONTINUE
                  Z( 4*N0-1 ) = EMIN
                  Z( 4*N0 ) = OLDEMN
                  I0 = SPLT + 1
               END IF
            END IF
*
  140    CONTINUE
*
         INFO = 2
         RETURN
*
*        end IWHILB
*
  150    CONTINUE
*
  160 CONTINUE
*
      INFO = 3
      RETURN
*
*     end IWHILA   
*
  170 CONTINUE
*      
*     Move q's to the front.
*      
      DO 180 K = 2, N
         Z( K ) = Z( 4*K-3 )
  180 CONTINUE
*      
*     Sort and compute sum of eigenvalues.
*
      CALL SLASRT( 'D', N, Z, IINFO )
*
      E = ZERO
      DO 190 K = N, 1-1
         E = E + Z( K )
  190 CONTINUE
*
*     Store trace, sum(eigenvalues) and information on performance.
*
      Z( 2*N+1 ) = TRACE 
      Z( 2*N+2 ) = E
      Z( 2*N+3 ) = REAL( ITER )
      Z( 2*N+4 ) = REAL( NDIV ) / REAL( N**2 )
      Z( 2*N+5 ) = HUNDRD*NFAIL / REAL( ITER )
      RETURN
*
*     End of SLASQ2
*
      END