1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
     225
     226
     227
     228
     229
     230
     231
     232
     233
     234
     235
     236
     237
     238
     239
     240
     241
     242
     243
     244
     245
     246
     247
     248
     249
     250
     251
     252
     253
     254
     255
     256
     257
     258
     259
     260
     261
     262
     263
     264
     265
     266
     267
     268
     269
     270
     271
     272
     273
     274
     275
     276
     277
     278
     279
     280
     281
     282
     283
     284
     285
     286
     287
     288
     289
     290
     291
     292
     293
     294
     295
     296
     297
     298
     299
     300
     301
     302
     303
     304
     305
     306
     307
     308
     309
     310
     311
     312
     313
     314
     315
     316
     317
     318
     319
     320
     321
     322
     323
     324
     325
     326
     327
     328
     329
     330
     331
     332
     333
     334
     335
     336
     337
     338
     339
     340
     341
     342
     343
     344
     345
     346
     347
     348
     349
     350
     351
     352
     353
     354
     355
     356
     357
     358
     359
     360
     361
     362
     363
     364
     365
     366
     367
     368
     369
     370
     371
     372
     373
     374
     375
     376
     377
     378
     379
     380
     381
     382
     383
     384
     385
     386
     387
     388
     389
     390
     391
     392
     393
     394
     395
     396
     397
     398
     399
     400
     401
     402
     403
     404
     405
     406
     407
     408
     409
     410
     411
     412
     413
     414
     415
     416
     417
     418
     419
     420
     421
     422
     423
     424
     425
     426
     427
     428
     429
     430
     431
     432
     433
     434
     435
     436
     437
     438
     439
     440
     441
     442
      RECURSIVE SUBROUTINE SORCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS,
     $                             SIGNS, M, P, Q, X11, LDX11, X12,
     $                             LDX12, X21, LDX21, X22, LDX22, THETA,
     $                             U1, LDU1, U2, LDU2, V1T, LDV1T, V2T,
     $                             LDV2T, WORK, LWORK, IWORK, INFO )
      IMPLICIT NONE
*
*  -- LAPACK routine (version 3.3.1) --
*
*  -- Contributed by Brian Sutton of the Randolph-Macon College --
*  -- November 2010
*
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--     
*
* @generated s
*
*     .. Scalar Arguments ..
      CHARACTER          JOBU1, JOBU2, JOBV1T, JOBV2T, SIGNS, TRANS
      INTEGER            INFO, LDU1, LDU2, LDV1T, LDV2T, LDX11, LDX12,
     $                   LDX21, LDX22, LWORK, M, P, Q
*     ..
*     .. Array Arguments ..
      INTEGER            IWORK( * )
      REAL               THETA( * )
      REAL               U1( LDU1, * ), U2( LDU2, * ), V1T( LDV1T, * ),
     $                   V2T( LDV2T, * ), WORK( * ), X11( LDX11, * ),
     $                   X12( LDX12, * ), X21( LDX21, * ), X22( LDX22,
     $                   * )
*     ..
*
*  Purpose
*  =======
*
*  SORCSD computes the CS decomposition of an M-by-M partitioned
*  orthogonal matrix X:
*
*                                  [  I  0  0 |  0  0  0 ]
*                                  [  0  C  0 |  0 -S  0 ]
*      [ X11 | X12 ]   [ U1 |    ] [  0  0  0 |  0  0 -I ] [ V1 |    ]**T
*  X = [-----------] = [---------] [---------------------] [---------]   .
*      [ X21 | X22 ]   [    | U2 ] [  0  0  0 |  I  0  0 ] [    | V2 ]
*                                  [  0  S  0 |  0  C  0 ]
*                                  [  0  0  I |  0  0  0 ]
*
*  X11 is P-by-Q. The orthogonal matrices U1, U2, V1, and V2 are P-by-P,
*  (M-P)-by-(M-P), Q-by-Q, and (M-Q)-by-(M-Q), respectively. C and S are
*  R-by-R nonnegative diagonal matrices satisfying C^2 + S^2 = I, in
*  which R = MIN(P,M-P,Q,M-Q).
*
*  Arguments
*  =========
*
*  JOBU1   (input) CHARACTER
*          = 'Y':      U1 is computed;
*          otherwise:  U1 is not computed.
*
*  JOBU2   (input) CHARACTER
*          = 'Y':      U2 is computed;
*          otherwise:  U2 is not computed.
*
*  JOBV1T  (input) CHARACTER
*          = 'Y':      V1T is computed;
*          otherwise:  V1T is not computed.
*
*  JOBV2T  (input) CHARACTER
*          = 'Y':      V2T is computed;
*          otherwise:  V2T is not computed.
*
*  TRANS   (input) CHARACTER
*          = 'T':      X, U1, U2, V1T, and V2T are stored in row-major
*                      order;
*          otherwise:  X, U1, U2, V1T, and V2T are stored in column-
*                      major order.
*
*  SIGNS   (input) CHARACTER
*          = 'O':      The lower-left block is made nonpositive (the
*                      "other" convention);
*          otherwise:  The upper-right block is made nonpositive (the
*                      "default" convention).
*
*  M       (input) INTEGER
*          The number of rows and columns in X.
*
*  P       (input) INTEGER
*          The number of rows in X11 and X12. 0 <= P <= M.
*
*  Q       (input) INTEGER
*          The number of columns in X11 and X21. 0 <= Q <= M.
*
*  X       (input/workspace) REAL array, dimension (LDX,M)
*          On entry, the orthogonal matrix whose CSD is desired.
*
*  LDX     (input) INTEGER
*          The leading dimension of X. LDX >= MAX(1,M).
*
*  THETA   (output) REAL array, dimension (R), in which R =
*          MIN(P,M-P,Q,M-Q).
*          C = DIAG( COS(THETA(1)), ... , COS(THETA(R)) ) and
*          S = DIAG( SIN(THETA(1)), ... , SIN(THETA(R)) ).
*
*  U1      (output) REAL array, dimension (P)
*          If JOBU1 = 'Y', U1 contains the P-by-P orthogonal matrix U1.
*
*  LDU1    (input) INTEGER
*          The leading dimension of U1. If JOBU1 = 'Y', LDU1 >=
*          MAX(1,P).
*
*  U2      (output) REAL array, dimension (M-P)
*          If JOBU2 = 'Y', U2 contains the (M-P)-by-(M-P) orthogonal
*          matrix U2.
*
*  LDU2    (input) INTEGER
*          The leading dimension of U2. If JOBU2 = 'Y', LDU2 >=
*          MAX(1,M-P).
*
*  V1T     (output) REAL array, dimension (Q)
*          If JOBV1T = 'Y', V1T contains the Q-by-Q matrix orthogonal
*          matrix V1**T.
*
*  LDV1T   (input) INTEGER
*          The leading dimension of V1T. If JOBV1T = 'Y', LDV1T >=
*          MAX(1,Q).
*
*  V2T     (output) REAL array, dimension (M-Q)
*          If JOBV2T = 'Y', V2T contains the (M-Q)-by-(M-Q) orthogonal
*          matrix V2**T.
*
*  LDV2T   (input) INTEGER
*          The leading dimension of V2T. If JOBV2T = 'Y', LDV2T >=
*          MAX(1,M-Q).
*
*  WORK    (workspace) REAL array, dimension (MAX(1,LWORK))
*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*          If INFO > 0 on exit, WORK(2:R) contains the values PHI(1),
*          ..., PHI(R-1) that, together with THETA(1), ..., THETA(R),
*          define the matrix in intermediate bidiagonal-block form
*          remaining after nonconvergence. INFO specifies the number
*          of nonzero PHI's.
*
*  LWORK   (input) INTEGER
*          The dimension of the array WORK.
*
*          If LWORK = -1, then a workspace query is assumed; the routine
*          only calculates the optimal size of the WORK array, returns
*          this value as the first entry of the work array, and no error
*          message related to LWORK is issued by XERBLA.
*
*  IWORK   (workspace) INTEGER array, dimension (M-MIN(P, M-P, Q, M-Q))
*
*  INFO    (output) INTEGER
*          = 0:  successful exit.
*          < 0:  if INFO = -i, the i-th argument had an illegal value.
*          > 0:  SBBCSD did not converge. See the description of WORK
*                above for details.
*
*  Reference
*  =========
*
*  [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
*      Algorithms, 50(1):33-65, 2009.
*
*  ===================================================================
*
*     .. Parameters ..
      REAL               REALONE
      PARAMETER          ( REALONE = 1.0E+0 )
      REAL               NEGONE, ONE, PIOVER2, ZERO
      PARAMETER          ( NEGONE = -1.0E+0, ONE = 1.0E+0,
     $                     PIOVER2 = 1.57079632679489662E0,
     $                     ZERO = 0.0E+0 )
*     ..
*     .. Local Scalars ..
      CHARACTER          TRANST, SIGNST
      INTEGER            CHILDINFO, I, IB11D, IB11E, IB12D, IB12E,
     $                   IB21D, IB21E, IB22D, IB22E, IBBCSD, IORBDB,
     $                   IORGLQ, IORGQR, IPHI, ITAUP1, ITAUP2, ITAUQ1,
     $                   ITAUQ2, J, LBBCSDWORK, LBBCSDWORKMIN,
     $                   LBBCSDWORKOPT, LORBDBWORK, LORBDBWORKMIN,
     $                   LORBDBWORKOPT, LORGLQWORK, LORGLQWORKMIN,
     $                   LORGLQWORKOPT, LORGQRWORK, LORGQRWORKMIN,
     $                   LORGQRWORKOPT, LWORKMIN, LWORKOPT
      LOGICAL            COLMAJOR, DEFAULTSIGNS, LQUERY, WANTU1, WANTU2,
     $                   WANTV1T, WANTV2T
*     ..
*     .. External Subroutines ..
      EXTERNAL           SBBCSD, SLACPY, SLAPMR, SLAPMT, SLASCL, SLASET,
     $                   SORBDB, SORGLQ, SORGQR, XERBLA
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. Intrinsic Functions
      INTRINSIC          COSINTMAXMINSIN
*     ..
*     .. Executable Statements ..
*
*     Test input arguments
*
      INFO = 0
      WANTU1 = LSAME( JOBU1, 'Y' )
      WANTU2 = LSAME( JOBU2, 'Y' )
      WANTV1T = LSAME( JOBV1T, 'Y' )
      WANTV2T = LSAME( JOBV2T, 'Y' )
      COLMAJOR = .NOT. LSAME( TRANS, 'T' )
      DEFAULTSIGNS = .NOT. LSAME( SIGNS, 'O' )
      LQUERY = LWORK .EQ. -1
      IF( M .LT. 0 ) THEN
         INFO = -7
      ELSE IF( P .LT. 0 .OR. P .GT. M ) THEN
         INFO = -8
      ELSE IF( Q .LT. 0 .OR. Q .GT. M ) THEN
         INFO = -9
      ELSE IF( ( COLMAJOR .AND. LDX11 .LT. MAX(1,P) ) .OR.
     $         ( .NOT.COLMAJOR .AND. LDX11 .LT. MAX(1,Q) ) ) THEN
         INFO = -11
      ELSE IF( WANTU1 .AND. LDU1 .LT. P ) THEN
         INFO = -14
      ELSE IF( WANTU2 .AND. LDU2 .LT. M-P ) THEN
         INFO = -16
      ELSE IF( WANTV1T .AND. LDV1T .LT. Q ) THEN
         INFO = -18
      ELSE IF( WANTV2T .AND. LDV2T .LT. M-Q ) THEN
         INFO = -20
      END IF
*
*     Work with transpose if convenient
*
      IF( INFO .EQ. 0 .AND. MIN( P, M-P ) .LT. MIN( Q, M-Q ) ) THEN
         IF( COLMAJOR ) THEN
            TRANST = 'T'
         ELSE
            TRANST = 'N'
         END IF
         IF( DEFAULTSIGNS ) THEN
            SIGNST = 'O'
         ELSE
            SIGNST = 'D'
         END IF
         CALL SORCSD( JOBV1T, JOBV2T, JOBU1, JOBU2, TRANST, SIGNST, M,
     $                Q, P, X11, LDX11, X21, LDX21, X12, LDX12, X22,
     $                LDX22, THETA, V1T, LDV1T, V2T, LDV2T, U1, LDU1,
     $                U2, LDU2, WORK, LWORK, IWORK, INFO )
         RETURN
      END IF
*
*     Work with permutation [ 0 I; I 0 ] * X * [ 0 I; I 0 ] if
*     convenient
*
      IF( INFO .EQ. 0 .AND. M-.LT. Q ) THEN
         IF( DEFAULTSIGNS ) THEN
            SIGNST = 'O'
         ELSE
            SIGNST = 'D'
         END IF
         CALL SORCSD( JOBU2, JOBU1, JOBV2T, JOBV1T, TRANS, SIGNST, M,
     $                M-P, M-Q, X22, LDX22, X21, LDX21, X12, LDX12, X11,
     $                LDX11, THETA, U2, LDU2, U1, LDU1, V2T, LDV2T, V1T,
     $                LDV1T, WORK, LWORK, IWORK, INFO )
         RETURN
      END IF
*
*     Compute workspace
*
      IF( INFO .EQ. 0 ) THEN
*
         IPHI = 2
         ITAUP1 = IPHI + MAX1, Q - 1 )
         ITAUP2 = ITAUP1 + MAX1, P )
         ITAUQ1 = ITAUP2 + MAX1, M - P )
         ITAUQ2 = ITAUQ1 + MAX1, Q )
         IORGQR = ITAUQ2 + MAX1, M - Q )
         CALL SORGQR( M-Q, M-Q, M-Q, 0MAX(1,M-Q), 0, WORK, -1,
     $                CHILDINFO )
         LORGQRWORKOPT = INT( WORK(1) )
         LORGQRWORKMIN = MAX1, M - Q )
         IORGLQ = ITAUQ2 + MAX1, M - Q )
         CALL SORGLQ( M-Q, M-Q, M-Q, 0MAX(1,M-Q), 0, WORK, -1,
     $                CHILDINFO )
         LORGLQWORKOPT = INT( WORK(1) )
         LORGLQWORKMIN = MAX1, M - Q )
         IORBDB = ITAUQ2 + MAX1, M - Q )
         CALL SORBDB( TRANS, SIGNS, M, P, Q, X11, LDX11, X12, LDX12,
     $                X21, LDX21, X22, LDX22, 000000, WORK,
     $                -1, CHILDINFO )
         LORBDBWORKOPT = INT( WORK(1) )
         LORBDBWORKMIN = LORBDBWORKOPT
         IB11D = ITAUQ2 + MAX1, M - Q )
         IB11E = IB11D + MAX1, Q )
         IB12D = IB11E + MAX1, Q - 1 )
         IB12E = IB12D + MAX1, Q )
         IB21D = IB12E + MAX1, Q - 1 )
         IB21E = IB21D + MAX1, Q )
         IB22D = IB21E + MAX1, Q - 1 )
         IB22E = IB22D + MAX1, Q )
         IBBCSD = IB22E + MAX1, Q - 1 )
         CALL SBBCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, M, P, Q, 0,
     $                0, U1, LDU1, U2, LDU2, V1T, LDV1T, V2T, LDV2T, 0,
     $                0000000, WORK, -1, CHILDINFO )
         LBBCSDWORKOPT = INT( WORK(1) )
         LBBCSDWORKMIN = LBBCSDWORKOPT
         LWORKOPT = MAX( IORGQR + LORGQRWORKOPT, IORGLQ + LORGLQWORKOPT,
     $              IORBDB + LORBDBWORKOPT, IBBCSD + LBBCSDWORKOPT ) - 1
         LWORKMIN = MAX( IORGQR + LORGQRWORKMIN, IORGLQ + LORGLQWORKMIN,
     $              IORBDB + LORBDBWORKOPT, IBBCSD + LBBCSDWORKMIN ) - 1
         WORK(1= MAX(LWORKOPT,LWORKMIN)
*
         IF( LWORK .LT. LWORKMIN .AND. .NOT. LQUERY ) THEN
            INFO = -22
         ELSE
            LORGQRWORK = LWORK - IORGQR + 1
            LORGLQWORK = LWORK - IORGLQ + 1
            LORBDBWORK = LWORK - IORBDB + 1
            LBBCSDWORK = LWORK - IBBCSD + 1
         END IF
      END IF
*
*     Abort if any illegal arguments
*
      IF( INFO .NE. 0 ) THEN
         CALL XERBLA( 'SORCSD'-INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
*
*     Transform to bidiagonal block form
*
      CALL SORBDB( TRANS, SIGNS, M, P, Q, X11, LDX11, X12, LDX12, X21,
     $             LDX21, X22, LDX22, THETA, WORK(IPHI), WORK(ITAUP1),
     $             WORK(ITAUP2), WORK(ITAUQ1), WORK(ITAUQ2),
     $             WORK(IORBDB), LORBDBWORK, CHILDINFO )
*
*     Accumulate Householder reflectors
*
      IF( COLMAJOR ) THEN
         IF( WANTU1 .AND. P .GT. 0 ) THEN
            CALL SLACPY( 'L', P, Q, X11, LDX11, U1, LDU1 )
            CALL SORGQR( P, P, Q, U1, LDU1, WORK(ITAUP1), WORK(IORGQR),
     $                   LORGQRWORK, INFO)
         END IF
         IF( WANTU2 .AND. M-.GT. 0 ) THEN
            CALL SLACPY( 'L', M-P, Q, X21, LDX21, U2, LDU2 )
            CALL SORGQR( M-P, M-P, Q, U2, LDU2, WORK(ITAUP2),
     $                   WORK(IORGQR), LORGQRWORK, INFO )
         END IF
         IF( WANTV1T .AND. Q .GT. 0 ) THEN
            CALL SLACPY( 'U', Q-1, Q-1, X11(1,2), LDX11, V1T(2,2),
     $                   LDV1T )
            V1T(11= ONE
            DO J = 2, Q
               V1T(1,J) = ZERO
               V1T(J,1= ZERO
            END DO
            CALL SORGLQ( Q-1, Q-1, Q-1, V1T(2,2), LDV1T, WORK(ITAUQ1),
     $                   WORK(IORGLQ), LORGLQWORK, INFO )
         END IF
         IF( WANTV2T .AND. M-.GT. 0 ) THEN
            CALL SLACPY( 'U', P, M-Q, X12, LDX12, V2T, LDV2T )
            CALL SLACPY( 'U', M-P-Q, M-P-Q, X22(Q+1,P+1), LDX22,
     $                   V2T(P+1,P+1), LDV2T )
            CALL SORGLQ( M-Q, M-Q, M-Q, V2T, LDV2T, WORK(ITAUQ2),
     $                   WORK(IORGLQ), LORGLQWORK, INFO )
         END IF
      ELSE
         IF( WANTU1 .AND. P .GT. 0 ) THEN
            CALL SLACPY( 'U', Q, P, X11, LDX11, U1, LDU1 )
            CALL SORGLQ( P, P, Q, U1, LDU1, WORK(ITAUP1), WORK(IORGLQ),
     $                   LORGLQWORK, INFO)
         END IF
         IF( WANTU2 .AND. M-.GT. 0 ) THEN
            CALL SLACPY( 'U', Q, M-P, X21, LDX21, U2, LDU2 )
            CALL SORGLQ( M-P, M-P, Q, U2, LDU2, WORK(ITAUP2),
     $                   WORK(IORGLQ), LORGLQWORK, INFO )
         END IF
         IF( WANTV1T .AND. Q .GT. 0 ) THEN
            CALL SLACPY( 'L', Q-1, Q-1, X11(2,1), LDX11, V1T(2,2),
     $                   LDV1T )
            V1T(11= ONE
            DO J = 2, Q
               V1T(1,J) = ZERO
               V1T(J,1= ZERO
            END DO
            CALL SORGQR( Q-1, Q-1, Q-1, V1T(2,2), LDV1T, WORK(ITAUQ1),
     $                   WORK(IORGQR), LORGQRWORK, INFO )
         END IF
         IF( WANTV2T .AND. M-.GT. 0 ) THEN
            CALL SLACPY( 'L', M-Q, P, X12, LDX12, V2T, LDV2T )
            CALL SLACPY( 'L', M-P-Q, M-P-Q, X22(P+1,Q+1), LDX22,
     $                   V2T(P+1,P+1), LDV2T )
            CALL SORGQR( M-Q, M-Q, M-Q, V2T, LDV2T, WORK(ITAUQ2),
     $                   WORK(IORGQR), LORGQRWORK, INFO )
         END IF
      END IF
*
*     Compute the CSD of the matrix in bidiagonal-block form
*
      CALL SBBCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, M, P, Q, THETA,
     $             WORK(IPHI), U1, LDU1, U2, LDU2, V1T, LDV1T, V2T,
     $             LDV2T, WORK(IB11D), WORK(IB11E), WORK(IB12D),
     $             WORK(IB12E), WORK(IB21D), WORK(IB21E), WORK(IB22D),
     $             WORK(IB22E), WORK(IBBCSD), LBBCSDWORK, INFO )
*
*     Permute rows and columns to place identity submatrices in top-
*     left corner of (1,1)-block and/or bottom-right corner of (1,2)-
*     block and/or bottom-right corner of (2,1)-block and/or top-left
*     corner of (2,2)-block 
*
      IF( Q .GT. 0 .AND. WANTU2 ) THEN
         DO I = 1, Q
            IWORK(I) = M - P - Q + I
         END DO
         DO I = Q + 1, M - P
            IWORK(I) = I - Q
         END DO
         IF( COLMAJOR ) THEN
            CALL SLAPMT( .FALSE., M-P, M-P, U2, LDU2, IWORK )
         ELSE
            CALL SLAPMR( .FALSE., M-P, M-P, U2, LDU2, IWORK )
         END IF
      END IF
      IF( M .GT. 0 .AND. WANTV2T ) THEN
         DO I = 1, P
            IWORK(I) = M - P - Q + I
         END DO
         DO I = P + 1, M - Q
            IWORK(I) = I - P
         END DO
         IF.NOT. COLMAJOR ) THEN
            CALL SLAPMT( .FALSE., M-Q, M-Q, V2T, LDV2T, IWORK )
         ELSE
            CALL SLAPMR( .FALSE., M-Q, M-Q, V2T, LDV2T, IWORK )
         END IF
      END IF
*
      RETURN
*
*     End SORCSD
*
      END