1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
     225
     226
     227
     228
     229
     230
     231
     232
     233
     234
     235
     236
     237
     238
     239
     240
     241
     242
     243
     244
     245
      SUBROUTINE SORGBR( VECT, M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
*
*  -- LAPACK routine (version 3.2) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2006
*
*     .. Scalar Arguments ..
      CHARACTER          VECT
      INTEGER            INFO, K, LDA, LWORK, M, N
*     ..
*     .. Array Arguments ..
      REAL               A( LDA, * ), TAU( * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  SORGBR generates one of the real orthogonal matrices Q or P**T
*  determined by SGEBRD when reducing a real matrix A to bidiagonal
*  form: A = Q * B * P**T.  Q and P**T are defined as products of
*  elementary reflectors H(i) or G(i) respectively.
*
*  If VECT = 'Q', A is assumed to have been an M-by-K matrix, and Q
*  is of order M:
*  if m >= k, Q = H(1) H(2) . . . H(k) and SORGBR returns the first n
*  columns of Q, where m >= n >= k;
*  if m < k, Q = H(1) H(2) . . . H(m-1) and SORGBR returns Q as an
*  M-by-M matrix.
*
*  If VECT = 'P', A is assumed to have been a K-by-N matrix, and P**T
*  is of order N:
*  if k < n, P**T = G(k) . . . G(2) G(1) and SORGBR returns the first m
*  rows of P**T, where n >= m >= k;
*  if k >= n, P**T = G(n-1) . . . G(2) G(1) and SORGBR returns P**T as
*  an N-by-N matrix.
*
*  Arguments
*  =========
*
*  VECT    (input) CHARACTER*1
*          Specifies whether the matrix Q or the matrix P**T is
*          required, as defined in the transformation applied by SGEBRD:
*          = 'Q':  generate Q;
*          = 'P':  generate P**T.
*
*  M       (input) INTEGER
*          The number of rows of the matrix Q or P**T to be returned.
*          M >= 0.
*
*  N       (input) INTEGER
*          The number of columns of the matrix Q or P**T to be returned.
*          N >= 0.
*          If VECT = 'Q', M >= N >= min(M,K);
*          if VECT = 'P', N >= M >= min(N,K).
*
*  K       (input) INTEGER
*          If VECT = 'Q', the number of columns in the original M-by-K
*          matrix reduced by SGEBRD.
*          If VECT = 'P', the number of rows in the original K-by-N
*          matrix reduced by SGEBRD.
*          K >= 0.
*
*  A       (input/output) REAL array, dimension (LDA,N)
*          On entry, the vectors which define the elementary reflectors,
*          as returned by SGEBRD.
*          On exit, the M-by-N matrix Q or P**T.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A. LDA >= max(1,M).
*
*  TAU     (input) REAL array, dimension
*                                (min(M,K)) if VECT = 'Q'
*                                (min(N,K)) if VECT = 'P'
*          TAU(i) must contain the scalar factor of the elementary
*          reflector H(i) or G(i), which determines Q or P**T, as
*          returned by SGEBRD in its array argument TAUQ or TAUP.
*
*  WORK    (workspace/output) REAL array, dimension (MAX(1,LWORK))
*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
*  LWORK   (input) INTEGER
*          The dimension of the array WORK. LWORK >= max(1,min(M,N)).
*          For optimum performance LWORK >= min(M,N)*NB, where NB
*          is the optimal blocksize.
*
*          If LWORK = -1, then a workspace query is assumed; the routine
*          only calculates the optimal size of the WORK array, returns
*          this value as the first entry of the WORK array, and no error
*          message related to LWORK is issued by XERBLA.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            LQUERY, WANTQ
      INTEGER            I, IINFO, J, LWKOPT, MN, NB
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ILAENV
      EXTERNAL           ILAENV, LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           SORGLQ, SORGQR, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAXMIN
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments
*
      INFO = 0
      WANTQ = LSAME( VECT, 'Q' )
      MN = MIN( M, N )
      LQUERY = ( LWORK.EQ.-1 )
      IF.NOT.WANTQ .AND. .NOT.LSAME( VECT, 'P' ) ) THEN
         INFO = -1
      ELSE IF( M.LT.0 ) THEN
         INFO = -2
      ELSE IF( N.LT.0 .OR. ( WANTQ .AND. ( N.GT..OR. N.LT.MIN( M,
     $         K ) ) ) .OR. ( .NOT.WANTQ .AND. ( M.GT..OR. M.LT.
     $         MIN( N, K ) ) ) ) THEN
         INFO = -3
      ELSE IF( K.LT.0 ) THEN
         INFO = -4
      ELSE IF( LDA.LT.MAX1, M ) ) THEN
         INFO = -6
      ELSE IF( LWORK.LT.MAX1, MN ) .AND. .NOT.LQUERY ) THEN
         INFO = -9
      END IF
*
      IF( INFO.EQ.0 ) THEN
         IF( WANTQ ) THEN
            NB = ILAENV( 1'SORGQR'' ', M, N, K, -1 )
         ELSE
            NB = ILAENV( 1'SORGLQ'' ', M, N, K, -1 )
         END IF
         LWKOPT = MAX1, MN )*NB
         WORK( 1 ) = LWKOPT
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SORGBR'-INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( M.EQ.0 .OR. N.EQ.0 ) THEN
         WORK( 1 ) = 1
         RETURN
      END IF
*
      IF( WANTQ ) THEN
*
*        Form Q, determined by a call to SGEBRD to reduce an m-by-k
*        matrix
*
         IF( M.GE.K ) THEN
*
*           If m >= k, assume m >= n >= k
*
            CALL SORGQR( M, N, K, A, LDA, TAU, WORK, LWORK, IINFO )
*
         ELSE
*
*           If m < k, assume m = n
*
*           Shift the vectors which define the elementary reflectors one
*           column to the right, and set the first row and column of Q
*           to those of the unit matrix
*
            DO 20 J = M, 2-1
               A( 1, J ) = ZERO
               DO 10 I = J + 1, M
                  A( I, J ) = A( I, J-1 )
   10          CONTINUE
   20       CONTINUE
            A( 11 ) = ONE
            DO 30 I = 2, M
               A( I, 1 ) = ZERO
   30       CONTINUE
            IF( M.GT.1 ) THEN
*
*              Form Q(2:m,2:m)
*
               CALL SORGQR( M-1, M-1, M-1, A( 22 ), LDA, TAU, WORK,
     $                      LWORK, IINFO )
            END IF
         END IF
      ELSE
*
*        Form P**T, determined by a call to SGEBRD to reduce a k-by-n
*        matrix
*
         IF( K.LT.N ) THEN
*
*           If k < n, assume k <= m <= n
*
            CALL SORGLQ( M, N, K, A, LDA, TAU, WORK, LWORK, IINFO )
*
         ELSE
*
*           If k >= n, assume m = n
*
*           Shift the vectors which define the elementary reflectors one
*           row downward, and set the first row and column of P**T to
*           those of the unit matrix
*
            A( 11 ) = ONE
            DO 40 I = 2, N
               A( I, 1 ) = ZERO
   40       CONTINUE
            DO 60 J = 2, N
               DO 50 I = J - 12-1
                  A( I, J ) = A( I-1, J )
   50          CONTINUE
               A( 1, J ) = ZERO
   60       CONTINUE
            IF( N.GT.1 ) THEN
*
*              Form P**T(2:n,2:n)
*
               CALL SORGLQ( N-1, N-1, N-1, A( 22 ), LDA, TAU, WORK,
     $                      LWORK, IINFO )
            END IF
         END IF
      END IF
      WORK( 1 ) = LWKOPT
      RETURN
*
*     End of SORGBR
*
      END