1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
     225
     226
     227
     228
     229
     230
     231
     232
     233
     234
     235
     236
     237
     238
     239
     240
     241
     242
     243
     244
     245
     246
     247
     248
     249
     250
     251
     252
     253
     254
     255
     256
     257
     258
     259
     260
     261
     262
     263
     264
     265
     266
     267
     268
     269
     270
     271
     272
     273
     274
     275
     276
     277
      SUBROUTINE SSPGVD( ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK,
     $                   LWORK, IWORK, LIWORK, INFO )
*
*  -- LAPACK driver routine (version 3.3.1) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*  -- April 2011                                                      --
*
*     .. Scalar Arguments ..
      CHARACTER          JOBZ, UPLO
      INTEGER            INFO, ITYPE, LDZ, LIWORK, LWORK, N
*     ..
*     .. Array Arguments ..
      INTEGER            IWORK( * )
      REAL               AP( * ), BP( * ), W( * ), WORK( * ),
     $                   Z( LDZ, * )
*     ..
*
*  Purpose
*  =======
*
*  SSPGVD computes all the eigenvalues, and optionally, the eigenvectors
*  of a real generalized symmetric-definite eigenproblem, of the form
*  A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A and
*  B are assumed to be symmetric, stored in packed format, and B is also
*  positive definite.
*  If eigenvectors are desired, it uses a divide and conquer algorithm.
*
*  The divide and conquer algorithm makes very mild assumptions about
*  floating point arithmetic. It will work on machines with a guard
*  digit in add/subtract, or on those binary machines without guard
*  digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
*  Cray-2. It could conceivably fail on hexadecimal or decimal machines
*  without guard digits, but we know of none.
*
*  Arguments
*  =========
*
*  ITYPE   (input) INTEGER
*          Specifies the problem type to be solved:
*          = 1:  A*x = (lambda)*B*x
*          = 2:  A*B*x = (lambda)*x
*          = 3:  B*A*x = (lambda)*x
*
*  JOBZ    (input) CHARACTER*1
*          = 'N':  Compute eigenvalues only;
*          = 'V':  Compute eigenvalues and eigenvectors.
*
*  UPLO    (input) CHARACTER*1
*          = 'U':  Upper triangles of A and B are stored;
*          = 'L':  Lower triangles of A and B are stored.
*
*  N       (input) INTEGER
*          The order of the matrices A and B.  N >= 0.
*
*  AP      (input/output) REAL array, dimension (N*(N+1)/2)
*          On entry, the upper or lower triangle of the symmetric matrix
*          A, packed columnwise in a linear array.  The j-th column of A
*          is stored in the array AP as follows:
*          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
*
*          On exit, the contents of AP are destroyed.
*
*  BP      (input/output) REAL array, dimension (N*(N+1)/2)
*          On entry, the upper or lower triangle of the symmetric matrix
*          B, packed columnwise in a linear array.  The j-th column of B
*          is stored in the array BP as follows:
*          if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
*          if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
*
*          On exit, the triangular factor U or L from the Cholesky
*          factorization B = U**T*U or B = L*L**T, in the same storage
*          format as B.
*
*  W       (output) REAL array, dimension (N)
*          If INFO = 0, the eigenvalues in ascending order.
*
*  Z       (output) REAL array, dimension (LDZ, N)
*          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
*          eigenvectors.  The eigenvectors are normalized as follows:
*          if ITYPE = 1 or 2, Z**T*B*Z = I;
*          if ITYPE = 3, Z**T*inv(B)*Z = I.
*          If JOBZ = 'N', then Z is not referenced.
*
*  LDZ     (input) INTEGER
*          The leading dimension of the array Z.  LDZ >= 1, and if
*          JOBZ = 'V', LDZ >= max(1,N).
*
*  WORK    (workspace/output) REAL array, dimension (MAX(1,LWORK))
*          On exit, if INFO = 0, WORK(1) returns the required LWORK.
*
*  LWORK   (input) INTEGER
*          The dimension of the array WORK.
*          If N <= 1,               LWORK >= 1.
*          If JOBZ = 'N' and N > 1, LWORK >= 2*N.
*          If JOBZ = 'V' and N > 1, LWORK >= 1 + 6*N + 2*N**2.
*
*          If LWORK = -1, then a workspace query is assumed; the routine
*          only calculates the required sizes of the WORK and IWORK
*          arrays, returns these values as the first entries of the WORK
*          and IWORK arrays, and no error message related to LWORK or
*          LIWORK is issued by XERBLA.
*
*  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
*          On exit, if INFO = 0, IWORK(1) returns the required LIWORK.
*
*  LIWORK  (input) INTEGER
*          The dimension of the array IWORK.
*          If JOBZ  = 'N' or N <= 1, LIWORK >= 1.
*          If JOBZ  = 'V' and N > 1, LIWORK >= 3 + 5*N.
*
*          If LIWORK = -1, then a workspace query is assumed; the
*          routine only calculates the required sizes of the WORK and
*          IWORK arrays, returns these values as the first entries of
*          the WORK and IWORK arrays, and no error message related to
*          LWORK or LIWORK is issued by XERBLA.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*          > 0:  SPPTRF or SSPEVD returned an error code:
*             <= N:  if INFO = i, SSPEVD failed to converge;
*                    i off-diagonal elements of an intermediate
*                    tridiagonal form did not converge to zero;
*             > N:   if INFO = N + i, for 1 <= i <= N, then the leading
*                    minor of order i of B is not positive definite.
*                    The factorization of B could not be completed and
*                    no eigenvalues or eigenvectors were computed.
*
*  Further Details
*  ===============
*
*  Based on contributions by
*     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               TWO
      PARAMETER          ( TWO = 2.0E+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            LQUERY, UPPER, WANTZ
      CHARACTER          TRANS
      INTEGER            J, LIWMIN, LWMIN, NEIG
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           SPPTRF, SSPEVD, SSPGST, STPMV, STPSV, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, REAL
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      WANTZ = LSAME( JOBZ, 'V' )
      UPPER = LSAME( UPLO, 'U' )
      LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
*
      INFO = 0
      IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
         INFO = -1
      ELSE IF.NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
         INFO = -2
      ELSE IF.NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
         INFO = -3
      ELSE IF( N.LT.0 ) THEN
         INFO = -4
      ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
         INFO = -9
      END IF
*
      IF( INFO.EQ.0 ) THEN
         IF( N.LE.1 ) THEN
            LIWMIN = 1
            LWMIN = 1
         ELSE
            IF( WANTZ ) THEN
               LIWMIN = 3 + 5*N
               LWMIN = 1 + 6*+ 2*N**2
            ELSE
               LIWMIN = 1
               LWMIN = 2*N
            END IF
         END IF
         WORK( 1 ) = LWMIN
         IWORK( 1 ) = LIWMIN
         IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
            INFO = -11
         ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
            INFO = -13
         END IF
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SSPGVD'-INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
*     Form a Cholesky factorization of BP.
*
      CALL SPPTRF( UPLO, N, BP, INFO )
      IF( INFO.NE.0 ) THEN
         INFO = N + INFO
         RETURN
      END IF
*
*     Transform problem to standard eigenvalue problem and solve.
*
      CALL SSPGST( ITYPE, UPLO, N, AP, BP, INFO )
      CALL SSPEVD( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, LWORK, IWORK,
     $             LIWORK, INFO )
      LWMIN = MAXREAL( LWMIN ), REAL( WORK( 1 ) ) )
      LIWMIN = MAXREAL( LIWMIN ), REAL( IWORK( 1 ) ) )
*
      IF( WANTZ ) THEN
*
*        Backtransform eigenvectors to the original problem.
*
         NEIG = N
         IF( INFO.GT.0 )
     $      NEIG = INFO - 1
         IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
*
*           For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
*           backtransform eigenvectors: x = inv(L)**T *y or inv(U)*y
*
            IF( UPPER ) THEN
               TRANS = 'N'
            ELSE
               TRANS = 'T'
            END IF
*
            DO 10 J = 1, NEIG
               CALL STPSV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
     $                     1 )
   10       CONTINUE
*
         ELSE IF( ITYPE.EQ.3 ) THEN
*
*           For B*A*x=(lambda)*x;
*           backtransform eigenvectors: x = L*y or U**T *y
*
            IF( UPPER ) THEN
               TRANS = 'T'
            ELSE
               TRANS = 'N'
            END IF
*
            DO 20 J = 1, NEIG
               CALL STPMV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
     $                     1 )
   20       CONTINUE
         END IF
      END IF
*
      WORK( 1 ) = LWMIN
      IWORK( 1 ) = LIWMIN
*
      RETURN
*
*     End of SSPGVD
*
      END