1
        2
        3
        4
        5
        6
        7
        8
        9
       10
       11
       12
       13
       14
       15
       16
       17
       18
       19
       20
       21
       22
       23
       24
       25
       26
       27
       28
       29
       30
       31
       32
       33
       34
       35
       36
       37
       38
       39
       40
       41
       42
       43
       44
       45
       46
       47
       48
       49
       50
       51
       52
       53
       54
       55
       56
       57
       58
       59
       60
       61
       62
       63
       64
       65
       66
       67
       68
       69
       70
       71
       72
       73
       74
       75
       76
       77
       78
       79
       80
       81
       82
       83
       84
       85
       86
       87
       88
       89
       90
       91
       92
       93
       94
       95
       96
       97
       98
       99
      100
      101
      102
      103
      104
      105
      106
      107
      108
      109
      110
      111
      112
      113
      114
      115
      116
      117
      118
      119
      120
      121
      122
      123
      124
      125
      126
      127
      128
      129
      130
      131
      132
      133
      134
      135
      136
      137
      138
      139
      140
      141
      142
      143
      144
      145
      146
      147
      148
      149
      150
      151
      152
      153
      154
      155
      156
      157
      158
      159
      160
      161
      162
      163
      164
      165
      166
      167
      168
      169
      170
      171
      172
      173
      174
      175
      176
      177
      178
      179
      180
      181
      182
      183
      184
      185
      186
      187
      188
      189
      190
      191
      192
      193
      194
      195
      196
      197
      198
      199
      200
      201
      202
      203
      204
      205
      206
      207
      208
      209
      210
      211
      212
      213
      214
      215
      216
      217
      218
      219
      220
      221
      222
      223
      224
      225
      226
      227
      228
      229
      230
      231
      232
      233
      234
      235
      236
      237
      238
      239
      240
      241
      242
      243
      244
      245
      246
      247
      248
      249
      250
      251
      252
      253
      254
      255
      256
      257
      258
      259
      260
      261
      262
      263
      264
      265
      266
      267
      268
      269
      270
      271
      272
      273
      274
      275
      276
      277
      278
      279
      280
      281
      282
      283
      284
      285
      286
      287
      288
      289
      290
      291
      292
      293
      294
      295
      296
      297
      298
      299
      300
      301
      302
      303
      304
      305
      306
      307
      308
      309
      310
      311
      312
      313
      314
      315
      316
      317
      318
      319
      320
      321
      322
      323
      324
      325
      326
      327
      328
      329
      330
      331
      332
      333
      334
      335
      336
      337
      338
      339
      340
      341
      342
      343
      344
      345
      346
      347
      348
      349
      350
      351
      352
      353
      354
      355
      356
      357
      358
      359
      360
      361
      362
      363
      364
      365
      366
      367
      368
      369
      370
      371
      372
      373
      374
      375
      376
      377
      378
      379
      380
      381
      382
      383
      384
      385
      386
      387
      388
      389
      390
      391
      392
      393
      394
      395
      396
      397
      398
      399
      400
      401
      402
      403
      404
      405
      406
      407
      408
      409
      410
      411
      412
      413
      414
      415
      416
      417
      418
      419
      420
      421
      422
      423
      424
      425
      426
      427
      428
      429
      430
      431
      432
      433
      434
      435
      436
      437
      438
      439
      440
      441
      442
      443
      444
      445
      446
      447
      448
      449
      450
      451
      452
      453
      454
      455
      456
      457
      458
      459
      460
      461
      462
      463
      464
      465
      466
      467
      468
      469
      470
      471
      472
      473
      474
      475
      476
      477
      478
      479
      480
      481
      482
      483
      484
      485
      486
      487
      488
      489
      490
      491
      492
      493
      494
      495
      496
      497
      498
      499
      500
      501
      502
      503
      504
      505
      506
      507
      508
      509
      510
      511
      512
      513
      514
      515
      516
      517
      518
      519
      520
      521
      522
      523
      524
      525
      526
      527
      528
      529
      530
      531
      532
      533
      534
      535
      536
      537
      538
      539
      540
      541
      542
      543
      544
      545
      546
      547
      548
      549
      550
      551
      552
      553
      554
      555
      556
      557
      558
      559
      560
      561
      562
      563
      564
      565
      566
      567
      568
      569
      570
      571
      572
      573
      574
      575
      576
      577
      578
      579
      580
      581
      582
      583
      584
      585
      586
      587
      588
      589
      590
      591
      592
      593
      594
      595
      596
      597
      598
      599
      600
      601
      602
      603
      604
      605
      606
      607
      608
      609
      610
      611
      612
      613
      614
      615
      616
      617
      618
      619
      620
      621
      622
      623
      624
      625
      626
      627
      628
      629
      630
      631
      632
      633
      634
      635
      636
      637
      638
      639
      640
      641
      642
      643
      644
      645
      646
      647
      648
      649
      650
      651
      652
      653
      654
      655
      656
      657
      658
      659
      660
      661
      662
      663
      664
      665
      666
      667
      668
      669
      670
      671
      672
      673
      674
      675
      676
      677
      678
      679
      680
      681
      682
      683
      684
      685
      686
      687
      688
      689
      690
      691
      692
      693
      694
      695
      696
      697
      698
      699
      700
      701
      702
      703
      704
      705
      706
      707
      708
      709
      710
      711
      712
      713
      714
      715
      716
      717
      718
      719
      720
      721
      722
      723
      724
      725
      726
      727
      728
      729
      730
      731
      732
      733
      734
      735
      736
      737
      738
      739
      740
      741
      742
      743
      744
      745
      746
      747
      748
      749
      750
      751
      752
      753
      754
      755
      756
      757
      758
      759
      760
      761
      762
      763
      764
      765
      766
      767
      768
      769
      770
      771
      772
      773
      774
      775
      776
      777
      778
      779
      780
      781
      782
      783
      784
      785
      786
      787
      788
      789
      790
      791
      792
      793
      794
      795
      796
      797
      798
      799
      800
      801
      802
      803
      804
      805
      806
      807
      808
      809
      810
      811
      812
      813
      814
      815
      816
      817
      818
      819
      820
      821
      822
      823
      824
      825
      826
      827
      828
      829
      830
      831
      832
      833
      834
      835
      836
      837
      838
      839
      840
      841
      842
      843
      844
      845
      846
      847
      848
      849
      850
      851
      852
      853
      854
      855
      856
      857
      858
      859
      860
      861
      862
      863
      864
      865
      866
      867
      868
      869
      870
      871
      872
      873
      874
      875
      876
      877
      878
      879
      880
      881
      882
      883
      884
      885
      886
      887
      888
      889
      890
      891
      892
      893
      894
      895
      896
      897
      898
      899
      900
      901
      902
      903
      904
      905
      906
      907
      908
      909
      910
      911
      912
      913
      914
      915
      916
      917
      918
      919
      920
      921
      922
      923
      924
      925
      926
      927
      928
      929
      930
      931
      932
      933
      934
      935
      936
      937
      938
      939
      940
      941
      942
      943
      944
      945
      946
      947
      948
      949
      950
      951
      952
      953
      954
      955
      956
      957
      958
      959
      960
      961
      962
      963
      964
      965
      966
      967
      968
      969
      970
      971
      972
      973
      974
      975
      976
      977
      978
      979
      980
      981
      982
      983
      984
      985
      986
      987
      988
      989
      990
      991
      992
      993
      994
      995
      996
      997
      998
      999
     1000
     1001
     1002
     1003
     1004
     1005
     1006
     1007
     1008
     1009
     1010
     1011
     1012
     1013
     1014
     1015
     1016
     1017
     1018
     1019
     1020
     1021
     1022
     1023
     1024
     1025
     1026
     1027
     1028
     1029
     1030
     1031
     1032
     1033
     1034
     1035
     1036
     1037
     1038
     1039
     1040
     1041
     1042
     1043
     1044
     1045
     1046
     1047
     1048
     1049
     1050
     1051
     1052
     1053
     1054
     1055
     1056
     1057
     1058
     1059
     1060
     1061
     1062
     1063
     1064
     1065
     1066
     1067
     1068
     1069
     1070
     1071
     1072
     1073
     1074
     1075
     1076
     1077
     1078
     1079
     1080
     1081
     1082
     1083
     1084
     1085
     1086
     1087
     1088
     1089
     1090
     1091
     1092
     1093
     1094
     1095
     1096
     1097
     1098
     1099
     1100
     1101
     1102
     1103
     1104
     1105
     1106
     1107
     1108
      SUBROUTINE STGEVC( SIDE, HOWMNY, SELECT, N, S, LDS, P, LDP, VL,
     $                   LDVL, VR, LDVR, MM, M, WORK, INFO )
*
*  -- LAPACK routine (version 3.3.1) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*  -- April 2011                                                      --
*
*     .. Scalar Arguments ..
      CHARACTER          HOWMNY, SIDE
      INTEGER            INFO, LDP, LDS, LDVL, LDVR, M, MM, N
*     ..
*     .. Array Arguments ..
      LOGICAL            SELECT* )
      REAL               P( LDP, * ), S( LDS, * ), VL( LDVL, * ),
     $                   VR( LDVR, * ), WORK( * )
*     ..
*
*
*  Purpose
*  =======
*
*  STGEVC computes some or all of the right and/or left eigenvectors of
*  a pair of real matrices (S,P), where S is a quasi-triangular matrix
*  and P is upper triangular.  Matrix pairs of this type are produced by
*  the generalized Schur factorization of a matrix pair (A,B):
*
*     A = Q*S*Z**T,  B = Q*P*Z**T
*
*  as computed by SGGHRD + SHGEQZ.
*
*  The right eigenvector x and the left eigenvector y of (S,P)
*  corresponding to an eigenvalue w are defined by:
*  
*     S*x = w*P*x,  (y**H)*S = w*(y**H)*P,
*  
*  where y**H denotes the conjugate tranpose of y.
*  The eigenvalues are not input to this routine, but are computed
*  directly from the diagonal blocks of S and P.
*  
*  This routine returns the matrices X and/or Y of right and left
*  eigenvectors of (S,P), or the products Z*X and/or Q*Y,
*  where Z and Q are input matrices.
*  If Q and Z are the orthogonal factors from the generalized Schur
*  factorization of a matrix pair (A,B), then Z*X and Q*Y
*  are the matrices of right and left eigenvectors of (A,B).

*  Arguments
*  =========
*
*  SIDE    (input) CHARACTER*1
*          = 'R': compute right eigenvectors only;
*          = 'L': compute left eigenvectors only;
*          = 'B': compute both right and left eigenvectors.
*
*  HOWMNY  (input) CHARACTER*1
*          = 'A': compute all right and/or left eigenvectors;
*          = 'B': compute all right and/or left eigenvectors,
*                 backtransformed by the matrices in VR and/or VL;
*          = 'S': compute selected right and/or left eigenvectors,
*                 specified by the logical array SELECT.
*
*  SELECT  (input) LOGICAL array, dimension (N)
*          If HOWMNY='S', SELECT specifies the eigenvectors to be
*          computed.  If w(j) is a real eigenvalue, the corresponding
*          real eigenvector is computed if SELECT(j) is .TRUE..
*          If w(j) and w(j+1) are the real and imaginary parts of a
*          complex eigenvalue, the corresponding complex eigenvector
*          is computed if either SELECT(j) or SELECT(j+1) is .TRUE.,
*          and on exit SELECT(j) is set to .TRUE. and SELECT(j+1) is
*          set to .FALSE..
*          Not referenced if HOWMNY = 'A' or 'B'.
*
*  N       (input) INTEGER
*          The order of the matrices S and P.  N >= 0.
*
*  S       (input) REAL array, dimension (LDS,N)
*          The upper quasi-triangular matrix S from a generalized Schur
*          factorization, as computed by SHGEQZ.
*
*  LDS     (input) INTEGER
*          The leading dimension of array S.  LDS >= max(1,N).
*
*  P       (input) REAL array, dimension (LDP,N)
*          The upper triangular matrix P from a generalized Schur
*          factorization, as computed by SHGEQZ.
*          2-by-2 diagonal blocks of P corresponding to 2-by-2 blocks
*          of S must be in positive diagonal form.
*
*  LDP     (input) INTEGER
*          The leading dimension of array P.  LDP >= max(1,N).
*
*  VL      (input/output) REAL array, dimension (LDVL,MM)
*          On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must
*          contain an N-by-N matrix Q (usually the orthogonal matrix Q
*          of left Schur vectors returned by SHGEQZ).
*          On exit, if SIDE = 'L' or 'B', VL contains:
*          if HOWMNY = 'A', the matrix Y of left eigenvectors of (S,P);
*          if HOWMNY = 'B', the matrix Q*Y;
*          if HOWMNY = 'S', the left eigenvectors of (S,P) specified by
*                      SELECT, stored consecutively in the columns of
*                      VL, in the same order as their eigenvalues.
*
*          A complex eigenvector corresponding to a complex eigenvalue
*          is stored in two consecutive columns, the first holding the
*          real part, and the second the imaginary part.
*
*          Not referenced if SIDE = 'R'.
*
*  LDVL    (input) INTEGER
*          The leading dimension of array VL.  LDVL >= 1, and if
*          SIDE = 'L' or 'B', LDVL >= N.
*
*  VR      (input/output) REAL array, dimension (LDVR,MM)
*          On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must
*          contain an N-by-N matrix Z (usually the orthogonal matrix Z
*          of right Schur vectors returned by SHGEQZ).
*
*          On exit, if SIDE = 'R' or 'B', VR contains:
*          if HOWMNY = 'A', the matrix X of right eigenvectors of (S,P);
*          if HOWMNY = 'B' or 'b', the matrix Z*X;
*          if HOWMNY = 'S' or 's', the right eigenvectors of (S,P)
*                      specified by SELECT, stored consecutively in the
*                      columns of VR, in the same order as their
*                      eigenvalues.
*
*          A complex eigenvector corresponding to a complex eigenvalue
*          is stored in two consecutive columns, the first holding the
*          real part and the second the imaginary part.
*          
*          Not referenced if SIDE = 'L'.
*
*  LDVR    (input) INTEGER
*          The leading dimension of the array VR.  LDVR >= 1, and if
*          SIDE = 'R' or 'B', LDVR >= N.
*
*  MM      (input) INTEGER
*          The number of columns in the arrays VL and/or VR. MM >= M.
*
*  M       (output) INTEGER
*          The number of columns in the arrays VL and/or VR actually
*          used to store the eigenvectors.  If HOWMNY = 'A' or 'B', M
*          is set to N.  Each selected real eigenvector occupies one
*          column and each selected complex eigenvector occupies two
*          columns.
*
*  WORK    (workspace) REAL array, dimension (6*N)
*
*  INFO    (output) INTEGER
*          = 0:  successful exit.
*          < 0:  if INFO = -i, the i-th argument had an illegal value.
*          > 0:  the 2-by-2 block (INFO:INFO+1) does not have a complex
*                eigenvalue.
*
*  Further Details
*  ===============
*
*  Allocation of workspace:
*  ---------- -- ---------
*
*     WORK( j ) = 1-norm of j-th column of A, above the diagonal
*     WORK( N+j ) = 1-norm of j-th column of B, above the diagonal
*     WORK( 2*N+1:3*N ) = real part of eigenvector
*     WORK( 3*N+1:4*N ) = imaginary part of eigenvector
*     WORK( 4*N+1:5*N ) = real part of back-transformed eigenvector
*     WORK( 5*N+1:6*N ) = imaginary part of back-transformed eigenvector
*
*  Rowwise vs. columnwise solution methods:
*  ------- --  ---------- -------- -------
*
*  Finding a generalized eigenvector consists basically of solving the
*  singular triangular system
*
*   (A - w B) x = 0     (for right) or:   (A - w B)**H y = 0  (for left)
*
*  Consider finding the i-th right eigenvector (assume all eigenvalues
*  are real). The equation to be solved is:
*       n                   i
*  0 = sum  C(j,k) v(k)  = sum  C(j,k) v(k)     for j = i,. . .,1
*      k=j                 k=j
*
*  where  C = (A - w B)  (The components v(i+1:n) are 0.)
*
*  The "rowwise" method is:
*
*  (1)  v(i) := 1
*  for j = i-1,. . .,1:
*                          i
*      (2) compute  s = - sum C(j,k) v(k)   and
*                        k=j+1
*
*      (3) v(j) := s / C(j,j)
*
*  Step 2 is sometimes called the "dot product" step, since it is an
*  inner product between the j-th row and the portion of the eigenvector
*  that has been computed so far.
*
*  The "columnwise" method consists basically in doing the sums
*  for all the rows in parallel.  As each v(j) is computed, the
*  contribution of v(j) times the j-th column of C is added to the
*  partial sums.  Since FORTRAN arrays are stored columnwise, this has
*  the advantage that at each step, the elements of C that are accessed
*  are adjacent to one another, whereas with the rowwise method, the
*  elements accessed at a step are spaced LDS (and LDP) words apart.
*
*  When finding left eigenvectors, the matrix in question is the
*  transpose of the one in storage, so the rowwise method then
*  actually accesses columns of A and B at each step, and so is the
*  preferred method.
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE, SAFETY
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0,
     $                   SAFETY = 1.0E+2 )
*     ..
*     .. Local Scalars ..
      LOGICAL            COMPL, COMPR, IL2BY2, ILABAD, ILALL, ILBACK,
     $                   ILBBAD, ILCOMP, ILCPLX, LSA, LSB
      INTEGER            I, IBEG, IEIG, IEND, IHWMNY, IINFO, IM, ISIDE,
     $                   J, JA, JC, JE, JR, JW, NA, NW
      REAL               ACOEF, ACOEFA, ANORM, ASCALE, BCOEFA, BCOEFI,
     $                   BCOEFR, BIG, BIGNUM, BNORM, BSCALE, CIM2A,
     $                   CIM2B, CIMAGA, CIMAGB, CRE2A, CRE2B, CREALA,
     $                   CREALB, DMIN, SAFMIN, SALFAR, SBETA, SCALE,
     $                   SMALL, TEMP, TEMP2, TEMP2I, TEMP2R, ULP, XMAX,
     $                   XSCALE
*     ..
*     .. Local Arrays ..
      REAL               BDIAG( 2 ), SUM22 ), SUMS( 22 ),
     $                   SUMP( 22 )
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      REAL               SLAMCH
      EXTERNAL           LSAME, SLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           SGEMV, SLABAD, SLACPY, SLAG2, SLALN2, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABSMAXMIN
*     ..
*     .. Executable Statements ..
*
*     Decode and Test the input parameters
*
      IF( LSAME( HOWMNY, 'A' ) ) THEN
         IHWMNY = 1
         ILALL = .TRUE.
         ILBACK = .FALSE.
      ELSE IF( LSAME( HOWMNY, 'S' ) ) THEN
         IHWMNY = 2
         ILALL = .FALSE.
         ILBACK = .FALSE.
      ELSE IF( LSAME( HOWMNY, 'B' ) ) THEN
         IHWMNY = 3
         ILALL = .TRUE.
         ILBACK = .TRUE.
      ELSE
         IHWMNY = -1
         ILALL = .TRUE.
      END IF
*
      IF( LSAME( SIDE, 'R' ) ) THEN
         ISIDE = 1
         COMPL = .FALSE.
         COMPR = .TRUE.
      ELSE IF( LSAME( SIDE, 'L' ) ) THEN
         ISIDE = 2
         COMPL = .TRUE.
         COMPR = .FALSE.
      ELSE IF( LSAME( SIDE, 'B' ) ) THEN
         ISIDE = 3
         COMPL = .TRUE.
         COMPR = .TRUE.
      ELSE
         ISIDE = -1
      END IF
*
      INFO = 0
      IF( ISIDE.LT.0 ) THEN
         INFO = -1
      ELSE IF( IHWMNY.LT.0 ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -4
      ELSE IF( LDS.LT.MAX1, N ) ) THEN
         INFO = -6
      ELSE IF( LDP.LT.MAX1, N ) ) THEN
         INFO = -8
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'STGEVC'-INFO )
         RETURN
      END IF
*
*     Count the number of eigenvectors to be computed
*
      IF.NOT.ILALL ) THEN
         IM = 0
         ILCPLX = .FALSE.
         DO 10 J = 1, N
            IF( ILCPLX ) THEN
               ILCPLX = .FALSE.
               GO TO 10
            END IF
            IF( J.LT.N ) THEN
               IF( S( J+1, J ).NE.ZERO )
     $            ILCPLX = .TRUE.
            END IF
            IF( ILCPLX ) THEN
               IFSELECT( J ) .OR. SELECT( J+1 ) )
     $            IM = IM + 2
            ELSE
               IFSELECT( J ) )
     $            IM = IM + 1
            END IF
   10    CONTINUE
      ELSE
         IM = N
      END IF
*
*     Check 2-by-2 diagonal blocks of A, B
*
      ILABAD = .FALSE.
      ILBBAD = .FALSE.
      DO 20 J = 1, N - 1
         IF( S( J+1, J ).NE.ZERO ) THEN
            IF( P( J, J ).EQ.ZERO .OR. P( J+1, J+1 ).EQ.ZERO .OR.
     $          P( J, J+1 ).NE.ZERO )ILBBAD = .TRUE.
            IF( J.LT.N-1 ) THEN
               IF( S( J+2, J+1 ).NE.ZERO )
     $            ILABAD = .TRUE.
            END IF
         END IF
   20 CONTINUE
*
      IF( ILABAD ) THEN
         INFO = -5
      ELSE IF( ILBBAD ) THEN
         INFO = -7
      ELSE IF( COMPL .AND. LDVL.LT..OR. LDVL.LT.1 ) THEN
         INFO = -10
      ELSE IF( COMPR .AND. LDVR.LT..OR. LDVR.LT.1 ) THEN
         INFO = -12
      ELSE IF( MM.LT.IM ) THEN
         INFO = -13
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'STGEVC'-INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      M = IM
      IF( N.EQ.0 )
     $   RETURN
*
*     Machine Constants
*
      SAFMIN = SLAMCH( 'Safe minimum' )
      BIG = ONE / SAFMIN
      CALL SLABAD( SAFMIN, BIG )
      ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' )
      SMALL = SAFMIN*/ ULP
      BIG = ONE / SMALL
      BIGNUM = ONE / ( SAFMIN*N )
*
*     Compute the 1-norm of each column of the strictly upper triangular
*     part (i.e., excluding all elements belonging to the diagonal
*     blocks) of A and B to check for possible overflow in the
*     triangular solver.
*
      ANORM = ABS( S( 11 ) )
      IF( N.GT.1 )
     $   ANORM = ANORM + ABS( S( 21 ) )
      BNORM = ABS( P( 11 ) )
      WORK( 1 ) = ZERO
      WORK( N+1 ) = ZERO
*
      DO 50 J = 2, N
         TEMP = ZERO
         TEMP2 = ZERO
         IF( S( J, J-1 ).EQ.ZERO ) THEN
            IEND = J - 1
         ELSE
            IEND = J - 2
         END IF
         DO 30 I = 1, IEND
            TEMP = TEMP + ABS( S( I, J ) )
            TEMP2 = TEMP2 + ABS( P( I, J ) )
   30    CONTINUE
         WORK( J ) = TEMP
         WORK( N+J ) = TEMP2
         DO 40 I = IEND + 1MIN( J+1, N )
            TEMP = TEMP + ABS( S( I, J ) )
            TEMP2 = TEMP2 + ABS( P( I, J ) )
   40    CONTINUE
         ANORM = MAX( ANORM, TEMP )
         BNORM = MAX( BNORM, TEMP2 )
   50 CONTINUE
*
      ASCALE = ONE / MAX( ANORM, SAFMIN )
      BSCALE = ONE / MAX( BNORM, SAFMIN )
*
*     Left eigenvectors
*
      IF( COMPL ) THEN
         IEIG = 0
*
*        Main loop over eigenvalues
*
         ILCPLX = .FALSE.
         DO 220 JE = 1, N
*
*           Skip this iteration if (a) HOWMNY='S' and SELECT=.FALSE., or
*           (b) this would be the second of a complex pair.
*           Check for complex eigenvalue, so as to be sure of which
*           entry(-ies) of SELECT to look at.
*
            IF( ILCPLX ) THEN
               ILCPLX = .FALSE.
               GO TO 220
            END IF
            NW = 1
            IF( JE.LT.N ) THEN
               IF( S( JE+1, JE ).NE.ZERO ) THEN
                  ILCPLX = .TRUE.
                  NW = 2
               END IF
            END IF
            IF( ILALL ) THEN
               ILCOMP = .TRUE.
            ELSE IF( ILCPLX ) THEN
               ILCOMP = SELECT( JE ) .OR. SELECT( JE+1 )
            ELSE
               ILCOMP = SELECT( JE )
            END IF
            IF.NOT.ILCOMP )
     $         GO TO 220
*
*           Decide if (a) singular pencil, (b) real eigenvalue, or
*           (c) complex eigenvalue.
*
            IF.NOT.ILCPLX ) THEN
               IFABS( S( JE, JE ) ).LE.SAFMIN .AND.
     $             ABS( P( JE, JE ) ).LE.SAFMIN ) THEN
*
*                 Singular matrix pencil -- return unit eigenvector
*
                  IEIG = IEIG + 1
                  DO 60 JR = 1, N
                     VL( JR, IEIG ) = ZERO
   60             CONTINUE
                  VL( IEIG, IEIG ) = ONE
                  GO TO 220
               END IF
            END IF
*
*           Clear vector
*
            DO 70 JR = 1, NW*N
               WORK( 2*N+JR ) = ZERO
   70       CONTINUE
*                                                 T
*           Compute coefficients in  ( a A - b B )  y = 0
*              a  is  ACOEF
*              b  is  BCOEFR + i*BCOEFI
*
            IF.NOT.ILCPLX ) THEN
*
*              Real eigenvalue
*
               TEMP = ONE / MAXABS( S( JE, JE ) )*ASCALE,
     $                ABS( P( JE, JE ) )*BSCALE, SAFMIN )
               SALFAR = ( TEMP*S( JE, JE ) )*ASCALE
               SBETA = ( TEMP*P( JE, JE ) )*BSCALE
               ACOEF = SBETA*ASCALE
               BCOEFR = SALFAR*BSCALE
               BCOEFI = ZERO
*
*              Scale to avoid underflow
*
               SCALE = ONE
               LSA = ABS( SBETA ).GE.SAFMIN .AND. ABS( ACOEF ).LT.SMALL
               LSB = ABS( SALFAR ).GE.SAFMIN .AND. ABS( BCOEFR ).LT.
     $               SMALL
               IF( LSA )
     $            SCALE = ( SMALL / ABS( SBETA ) )*MIN( ANORM, BIG )
               IF( LSB )
     $            SCALE = MAXSCALE, ( SMALL / ABS( SALFAR ) )*
     $                    MIN( BNORM, BIG ) )
               IF( LSA .OR. LSB ) THEN
                  SCALE = MINSCALE, ONE /
     $                    ( SAFMIN*MAX( ONE, ABS( ACOEF ),
     $                    ABS( BCOEFR ) ) ) )
                  IF( LSA ) THEN
                     ACOEF = ASCALE*SCALE*SBETA )
                  ELSE
                     ACOEF = SCALE*ACOEF
                  END IF
                  IF( LSB ) THEN
                     BCOEFR = BSCALE*SCALE*SALFAR )
                  ELSE
                     BCOEFR = SCALE*BCOEFR
                  END IF
               END IF
               ACOEFA = ABS( ACOEF )
               BCOEFA = ABS( BCOEFR )
*
*              First component is 1
*
               WORK( 2*N+JE ) = ONE
               XMAX = ONE
            ELSE
*
*              Complex eigenvalue
*
               CALL SLAG2( S( JE, JE ), LDS, P( JE, JE ), LDP,
     $                     SAFMIN*SAFETY, ACOEF, TEMP, BCOEFR, TEMP2,
     $                     BCOEFI )
               BCOEFI = -BCOEFI
               IF( BCOEFI.EQ.ZERO ) THEN
                  INFO = JE
                  RETURN
               END IF
*
*              Scale to avoid over/underflow
*
               ACOEFA = ABS( ACOEF )
               BCOEFA = ABS( BCOEFR ) + ABS( BCOEFI )
               SCALE = ONE
               IF( ACOEFA*ULP.LT.SAFMIN .AND. ACOEFA.GE.SAFMIN )
     $            SCALE = ( SAFMIN / ULP ) / ACOEFA
               IF( BCOEFA*ULP.LT.SAFMIN .AND. BCOEFA.GE.SAFMIN )
     $            SCALE = MAXSCALE, ( SAFMIN / ULP ) / BCOEFA )
               IF( SAFMIN*ACOEFA.GT.ASCALE )
     $            SCALE = ASCALE / ( SAFMIN*ACOEFA )
               IF( SAFMIN*BCOEFA.GT.BSCALE )
     $            SCALE = MINSCALE, BSCALE / ( SAFMIN*BCOEFA ) )
               IFSCALE.NE.ONE ) THEN
                  ACOEF = SCALE*ACOEF
                  ACOEFA = ABS( ACOEF )
                  BCOEFR = SCALE*BCOEFR
                  BCOEFI = SCALE*BCOEFI
                  BCOEFA = ABS( BCOEFR ) + ABS( BCOEFI )
               END IF
*
*              Compute first two components of eigenvector
*
               TEMP = ACOEF*S( JE+1, JE )
               TEMP2R = ACOEF*S( JE, JE ) - BCOEFR*P( JE, JE )
               TEMP2I = -BCOEFI*P( JE, JE )
               IFABS( TEMP ).GT.ABS( TEMP2R )+ABS( TEMP2I ) ) THEN
                  WORK( 2*N+JE ) = ONE
                  WORK( 3*N+JE ) = ZERO
                  WORK( 2*N+JE+1 ) = -TEMP2R / TEMP
                  WORK( 3*N+JE+1 ) = -TEMP2I / TEMP
               ELSE
                  WORK( 2*N+JE+1 ) = ONE
                  WORK( 3*N+JE+1 ) = ZERO
                  TEMP = ACOEF*S( JE, JE+1 )
                  WORK( 2*N+JE ) = ( BCOEFR*P( JE+1, JE+1 )-ACOEF*
     $                             S( JE+1, JE+1 ) ) / TEMP
                  WORK( 3*N+JE ) = BCOEFI*P( JE+1, JE+1 ) / TEMP
               END IF
               XMAX = MAXABS( WORK( 2*N+JE ) )+ABS( WORK( 3*N+JE ) ),
     $                ABS( WORK( 2*N+JE+1 ) )+ABS( WORK( 3*N+JE+1 ) ) )
            END IF
*
            DMIN = MAX( ULP*ACOEFA*ANORM, ULP*BCOEFA*BNORM, SAFMIN )
*
*                                           T
*           Triangular solve of  (a A - b B)  y = 0
*
*                                   T
*           (rowwise in  (a A - b B) , or columnwise in (a A - b B) )
*
            IL2BY2 = .FALSE.
*
            DO 160 J = JE + NW, N
               IF( IL2BY2 ) THEN
                  IL2BY2 = .FALSE.
                  GO TO 160
               END IF
*
               NA = 1
               BDIAG( 1 ) = P( J, J )
               IF( J.LT.N ) THEN
                  IF( S( J+1, J ).NE.ZERO ) THEN
                     IL2BY2 = .TRUE.
                     BDIAG( 2 ) = P( J+1, J+1 )
                     NA = 2
                  END IF
               END IF
*
*              Check whether scaling is necessary for dot products
*
               XSCALE = ONE / MAX( ONE, XMAX )
               TEMP = MAX( WORK( J ), WORK( N+J ),
     $                ACOEFA*WORK( J )+BCOEFA*WORK( N+J ) )
               IF( IL2BY2 )
     $            TEMP = MAX( TEMP, WORK( J+1 ), WORK( N+J+1 ),
     $                   ACOEFA*WORK( J+1 )+BCOEFA*WORK( N+J+1 ) )
               IF( TEMP.GT.BIGNUM*XSCALE ) THEN
                  DO 90 JW = 0, NW - 1
                     DO 80 JR = JE, J - 1
                        WORK( ( JW+2 )*N+JR ) = XSCALE*
     $                     WORK( ( JW+2 )*N+JR )
   80                CONTINUE
   90             CONTINUE
                  XMAX = XMAX*XSCALE
               END IF
*
*              Compute dot products
*
*                    j-1
*              SUM = sum  conjg( a*S(k,j) - b*P(k,j) )*x(k)
*                    k=je
*
*              To reduce the op count, this is done as
*
*              _        j-1                  _        j-1
*              a*conjg( sum  S(k,j)*x(k) ) - b*conjg( sum  P(k,j)*x(k) )
*                       k=je                          k=je
*
*              which may cause underflow problems if A or B are close
*              to underflow.  (E.g., less than SMALL.)
*
*
               DO 120 JW = 1, NW
                  DO 110 JA = 1, NA
                     SUMS( JA, JW ) = ZERO
                     SUMP( JA, JW ) = ZERO
*
                     DO 100 JR = JE, J - 1
                        SUMS( JA, JW ) = SUMS( JA, JW ) +
     $                                   S( JR, J+JA-1 )*
     $                                   WORK( ( JW+1 )*N+JR )
                        SUMP( JA, JW ) = SUMP( JA, JW ) +
     $                                   P( JR, J+JA-1 )*
     $                                   WORK( ( JW+1 )*N+JR )
  100                CONTINUE
  110             CONTINUE
  120          CONTINUE
*
               DO 130 JA = 1, NA
                  IF( ILCPLX ) THEN
                     SUM( JA, 1 ) = -ACOEF*SUMS( JA, 1 ) +
     $                              BCOEFR*SUMP( JA, 1 ) -
     $                              BCOEFI*SUMP( JA, 2 )
                     SUM( JA, 2 ) = -ACOEF*SUMS( JA, 2 ) +
     $                              BCOEFR*SUMP( JA, 2 ) +
     $                              BCOEFI*SUMP( JA, 1 )
                  ELSE
                     SUM( JA, 1 ) = -ACOEF*SUMS( JA, 1 ) +
     $                              BCOEFR*SUMP( JA, 1 )
                  END IF
  130          CONTINUE
*
*                                  T
*              Solve  ( a A - b B )  y = SUM(,)
*              with scaling and perturbation of the denominator
*
               CALL SLALN2( .TRUE., NA, NW, DMIN, ACOEF, S( J, J ), LDS,
     $                      BDIAG( 1 ), BDIAG( 2 ), SUM2, BCOEFR,
     $                      BCOEFI, WORK( 2*N+J ), N, SCALE, TEMP,
     $                      IINFO )
               IFSCALE.LT.ONE ) THEN
                  DO 150 JW = 0, NW - 1
                     DO 140 JR = JE, J - 1
                        WORK( ( JW+2 )*N+JR ) = SCALE*
     $                     WORK( ( JW+2 )*N+JR )
  140                CONTINUE
  150             CONTINUE
                  XMAX = SCALE*XMAX
               END IF
               XMAX = MAX( XMAX, TEMP )
  160       CONTINUE
*
*           Copy eigenvector to VL, back transforming if
*           HOWMNY='B'.
*
            IEIG = IEIG + 1
            IF( ILBACK ) THEN
               DO 170 JW = 0, NW - 1
                  CALL SGEMV( 'N', N, N+1-JE, ONE, VL( 1, JE ), LDVL,
     $                        WORK( ( JW+2 )*N+JE ), 1, ZERO,
     $                        WORK( ( JW+4 )*N+1 ), 1 )
  170          CONTINUE
               CALL SLACPY( ' ', N, NW, WORK( 4*N+1 ), N, VL( 1, JE ),
     $                      LDVL )
               IBEG = 1
            ELSE
               CALL SLACPY( ' ', N, NW, WORK( 2*N+1 ), N, VL( 1, IEIG ),
     $                      LDVL )
               IBEG = JE
            END IF
*
*           Scale eigenvector
*
            XMAX = ZERO
            IF( ILCPLX ) THEN
               DO 180 J = IBEG, N
                  XMAX = MAX( XMAX, ABS( VL( J, IEIG ) )+
     $                   ABS( VL( J, IEIG+1 ) ) )
  180          CONTINUE
            ELSE
               DO 190 J = IBEG, N
                  XMAX = MAX( XMAX, ABS( VL( J, IEIG ) ) )
  190          CONTINUE
            END IF
*
            IF( XMAX.GT.SAFMIN ) THEN
               XSCALE = ONE / XMAX
*
               DO 210 JW = 0, NW - 1
                  DO 200 JR = IBEG, N
                     VL( JR, IEIG+JW ) = XSCALE*VL( JR, IEIG+JW )
  200             CONTINUE
  210          CONTINUE
            END IF
            IEIG = IEIG + NW - 1
*
  220    CONTINUE
      END IF
*
*     Right eigenvectors
*
      IF( COMPR ) THEN
         IEIG = IM + 1
*
*        Main loop over eigenvalues
*
         ILCPLX = .FALSE.
         DO 500 JE = N, 1-1
*
*           Skip this iteration if (a) HOWMNY='S' and SELECT=.FALSE., or
*           (b) this would be the second of a complex pair.
*           Check for complex eigenvalue, so as to be sure of which
*           entry(-ies) of SELECT to look at -- if complex, SELECT(JE)
*           or SELECT(JE-1).
*           If this is a complex pair, the 2-by-2 diagonal block
*           corresponding to the eigenvalue is in rows/columns JE-1:JE
*
            IF( ILCPLX ) THEN
               ILCPLX = .FALSE.
               GO TO 500
            END IF
            NW = 1
            IF( JE.GT.1 ) THEN
               IF( S( JE, JE-1 ).NE.ZERO ) THEN
                  ILCPLX = .TRUE.
                  NW = 2
               END IF
            END IF
            IF( ILALL ) THEN
               ILCOMP = .TRUE.
            ELSE IF( ILCPLX ) THEN
               ILCOMP = SELECT( JE ) .OR. SELECT( JE-1 )
            ELSE
               ILCOMP = SELECT( JE )
            END IF
            IF.NOT.ILCOMP )
     $         GO TO 500
*
*           Decide if (a) singular pencil, (b) real eigenvalue, or
*           (c) complex eigenvalue.
*
            IF.NOT.ILCPLX ) THEN
               IFABS( S( JE, JE ) ).LE.SAFMIN .AND.
     $             ABS( P( JE, JE ) ).LE.SAFMIN ) THEN
*
*                 Singular matrix pencil -- unit eigenvector
*
                  IEIG = IEIG - 1
                  DO 230 JR = 1, N
                     VR( JR, IEIG ) = ZERO
  230             CONTINUE
                  VR( IEIG, IEIG ) = ONE
                  GO TO 500
               END IF
            END IF
*
*           Clear vector
*
            DO 250 JW = 0, NW - 1
               DO 240 JR = 1, N
                  WORK( ( JW+2 )*N+JR ) = ZERO
  240          CONTINUE
  250       CONTINUE
*
*           Compute coefficients in  ( a A - b B ) x = 0
*              a  is  ACOEF
*              b  is  BCOEFR + i*BCOEFI
*
            IF.NOT.ILCPLX ) THEN
*
*              Real eigenvalue
*
               TEMP = ONE / MAXABS( S( JE, JE ) )*ASCALE,
     $                ABS( P( JE, JE ) )*BSCALE, SAFMIN )
               SALFAR = ( TEMP*S( JE, JE ) )*ASCALE
               SBETA = ( TEMP*P( JE, JE ) )*BSCALE
               ACOEF = SBETA*ASCALE
               BCOEFR = SALFAR*BSCALE
               BCOEFI = ZERO
*
*              Scale to avoid underflow
*
               SCALE = ONE
               LSA = ABS( SBETA ).GE.SAFMIN .AND. ABS( ACOEF ).LT.SMALL
               LSB = ABS( SALFAR ).GE.SAFMIN .AND. ABS( BCOEFR ).LT.
     $               SMALL
               IF( LSA )
     $            SCALE = ( SMALL / ABS( SBETA ) )*MIN( ANORM, BIG )
               IF( LSB )
     $            SCALE = MAXSCALE, ( SMALL / ABS( SALFAR ) )*
     $                    MIN( BNORM, BIG ) )
               IF( LSA .OR. LSB ) THEN
                  SCALE = MINSCALE, ONE /
     $                    ( SAFMIN*MAX( ONE, ABS( ACOEF ),
     $                    ABS( BCOEFR ) ) ) )
                  IF( LSA ) THEN
                     ACOEF = ASCALE*SCALE*SBETA )
                  ELSE
                     ACOEF = SCALE*ACOEF
                  END IF
                  IF( LSB ) THEN
                     BCOEFR = BSCALE*SCALE*SALFAR )
                  ELSE
                     BCOEFR = SCALE*BCOEFR
                  END IF
               END IF
               ACOEFA = ABS( ACOEF )
               BCOEFA = ABS( BCOEFR )
*
*              First component is 1
*
               WORK( 2*N+JE ) = ONE
               XMAX = ONE
*
*              Compute contribution from column JE of A and B to sum
*              (See "Further Details", above.)
*
               DO 260 JR = 1, JE - 1
                  WORK( 2*N+JR ) = BCOEFR*P( JR, JE ) -
     $                             ACOEF*S( JR, JE )
  260          CONTINUE
            ELSE
*
*              Complex eigenvalue
*
               CALL SLAG2( S( JE-1, JE-1 ), LDS, P( JE-1, JE-1 ), LDP,
     $                     SAFMIN*SAFETY, ACOEF, TEMP, BCOEFR, TEMP2,
     $                     BCOEFI )
               IF( BCOEFI.EQ.ZERO ) THEN
                  INFO = JE - 1
                  RETURN
               END IF
*
*              Scale to avoid over/underflow
*
               ACOEFA = ABS( ACOEF )
               BCOEFA = ABS( BCOEFR ) + ABS( BCOEFI )
               SCALE = ONE
               IF( ACOEFA*ULP.LT.SAFMIN .AND. ACOEFA.GE.SAFMIN )
     $            SCALE = ( SAFMIN / ULP ) / ACOEFA
               IF( BCOEFA*ULP.LT.SAFMIN .AND. BCOEFA.GE.SAFMIN )
     $            SCALE = MAXSCALE, ( SAFMIN / ULP ) / BCOEFA )
               IF( SAFMIN*ACOEFA.GT.ASCALE )
     $            SCALE = ASCALE / ( SAFMIN*ACOEFA )
               IF( SAFMIN*BCOEFA.GT.BSCALE )
     $            SCALE = MINSCALE, BSCALE / ( SAFMIN*BCOEFA ) )
               IFSCALE.NE.ONE ) THEN
                  ACOEF = SCALE*ACOEF
                  ACOEFA = ABS( ACOEF )
                  BCOEFR = SCALE*BCOEFR
                  BCOEFI = SCALE*BCOEFI
                  BCOEFA = ABS( BCOEFR ) + ABS( BCOEFI )
               END IF
*
*              Compute first two components of eigenvector
*              and contribution to sums
*
               TEMP = ACOEF*S( JE, JE-1 )
               TEMP2R = ACOEF*S( JE, JE ) - BCOEFR*P( JE, JE )
               TEMP2I = -BCOEFI*P( JE, JE )
               IFABS( TEMP ).GE.ABS( TEMP2R )+ABS( TEMP2I ) ) THEN
                  WORK( 2*N+JE ) = ONE
                  WORK( 3*N+JE ) = ZERO
                  WORK( 2*N+JE-1 ) = -TEMP2R / TEMP
                  WORK( 3*N+JE-1 ) = -TEMP2I / TEMP
               ELSE
                  WORK( 2*N+JE-1 ) = ONE
                  WORK( 3*N+JE-1 ) = ZERO
                  TEMP = ACOEF*S( JE-1, JE )
                  WORK( 2*N+JE ) = ( BCOEFR*P( JE-1, JE-1 )-ACOEF*
     $                             S( JE-1, JE-1 ) ) / TEMP
                  WORK( 3*N+JE ) = BCOEFI*P( JE-1, JE-1 ) / TEMP
               END IF
*
               XMAX = MAXABS( WORK( 2*N+JE ) )+ABS( WORK( 3*N+JE ) ),
     $                ABS( WORK( 2*N+JE-1 ) )+ABS( WORK( 3*N+JE-1 ) ) )
*
*              Compute contribution from columns JE and JE-1
*              of A and B to the sums.
*
               CREALA = ACOEF*WORK( 2*N+JE-1 )
               CIMAGA = ACOEF*WORK( 3*N+JE-1 )
               CREALB = BCOEFR*WORK( 2*N+JE-1 ) -
     $                  BCOEFI*WORK( 3*N+JE-1 )
               CIMAGB = BCOEFI*WORK( 2*N+JE-1 ) +
     $                  BCOEFR*WORK( 3*N+JE-1 )
               CRE2A = ACOEF*WORK( 2*N+JE )
               CIM2A = ACOEF*WORK( 3*N+JE )
               CRE2B = BCOEFR*WORK( 2*N+JE ) - BCOEFI*WORK( 3*N+JE )
               CIM2B = BCOEFI*WORK( 2*N+JE ) + BCOEFR*WORK( 3*N+JE )
               DO 270 JR = 1, JE - 2
                  WORK( 2*N+JR ) = -CREALA*S( JR, JE-1 ) +
     $                             CREALB*P( JR, JE-1 ) -
     $                             CRE2A*S( JR, JE ) + CRE2B*P( JR, JE )
                  WORK( 3*N+JR ) = -CIMAGA*S( JR, JE-1 ) +
     $                             CIMAGB*P( JR, JE-1 ) -
     $                             CIM2A*S( JR, JE ) + CIM2B*P( JR, JE )
  270          CONTINUE
            END IF
*
            DMIN = MAX( ULP*ACOEFA*ANORM, ULP*BCOEFA*BNORM, SAFMIN )
*
*           Columnwise triangular solve of  (a A - b B)  x = 0
*
            IL2BY2 = .FALSE.
            DO 370 J = JE - NW, 1-1
*
*              If a 2-by-2 block, is in position j-1:j, wait until
*              next iteration to process it (when it will be j:j+1)
*
               IF.NOT.IL2BY2 .AND. J.GT.1 ) THEN
                  IF( S( J, J-1 ).NE.ZERO ) THEN
                     IL2BY2 = .TRUE.
                     GO TO 370
                  END IF
               END IF
               BDIAG( 1 ) = P( J, J )
               IF( IL2BY2 ) THEN
                  NA = 2
                  BDIAG( 2 ) = P( J+1, J+1 )
               ELSE
                  NA = 1
               END IF
*
*              Compute x(j) (and x(j+1), if 2-by-2 block)
*
               CALL SLALN2( .FALSE., NA, NW, DMIN, ACOEF, S( J, J ),
     $                      LDS, BDIAG( 1 ), BDIAG( 2 ), WORK( 2*N+J ),
     $                      N, BCOEFR, BCOEFI, SUM2SCALE, TEMP,
     $                      IINFO )
               IFSCALE.LT.ONE ) THEN
*
                  DO 290 JW = 0, NW - 1
                     DO 280 JR = 1, JE
                        WORK( ( JW+2 )*N+JR ) = SCALE*
     $                     WORK( ( JW+2 )*N+JR )
  280                CONTINUE
  290             CONTINUE
               END IF
               XMAX = MAXSCALE*XMAX, TEMP )
*
               DO 310 JW = 1, NW
                  DO 300 JA = 1, NA
                     WORK( ( JW+1 )*N+J+JA-1 ) = SUM( JA, JW )
  300             CONTINUE
  310          CONTINUE
*
*              w = w + x(j)*(a S(*,j) - b P(*,j) ) with scaling
*
               IF( J.GT.1 ) THEN
*
*                 Check whether scaling is necessary for sum.
*
                  XSCALE = ONE / MAX( ONE, XMAX )
                  TEMP = ACOEFA*WORK( J ) + BCOEFA*WORK( N+J )
                  IF( IL2BY2 )
     $               TEMP = MAX( TEMP, ACOEFA*WORK( J+1 )+BCOEFA*
     $                      WORK( N+J+1 ) )
                  TEMP = MAX( TEMP, ACOEFA, BCOEFA )
                  IF( TEMP.GT.BIGNUM*XSCALE ) THEN
*
                     DO 330 JW = 0, NW - 1
                        DO 320 JR = 1, JE
                           WORK( ( JW+2 )*N+JR ) = XSCALE*
     $                        WORK( ( JW+2 )*N+JR )
  320                   CONTINUE
  330                CONTINUE
                     XMAX = XMAX*XSCALE
                  END IF
*
*                 Compute the contributions of the off-diagonals of
*                 column j (and j+1, if 2-by-2 block) of A and B to the
*                 sums.
*
*
                  DO 360 JA = 1, NA
                     IF( ILCPLX ) THEN
                        CREALA = ACOEF*WORK( 2*N+J+JA-1 )
                        CIMAGA = ACOEF*WORK( 3*N+J+JA-1 )
                        CREALB = BCOEFR*WORK( 2*N+J+JA-1 ) -
     $                           BCOEFI*WORK( 3*N+J+JA-1 )
                        CIMAGB = BCOEFI*WORK( 2*N+J+JA-1 ) +
     $                           BCOEFR*WORK( 3*N+J+JA-1 )
                        DO 340 JR = 1, J - 1
                           WORK( 2*N+JR ) = WORK( 2*N+JR ) -
     $                                      CREALA*S( JR, J+JA-1 ) +
     $                                      CREALB*P( JR, J+JA-1 )
                           WORK( 3*N+JR ) = WORK( 3*N+JR ) -
     $                                      CIMAGA*S( JR, J+JA-1 ) +
     $                                      CIMAGB*P( JR, J+JA-1 )
  340                   CONTINUE
                     ELSE
                        CREALA = ACOEF*WORK( 2*N+J+JA-1 )
                        CREALB = BCOEFR*WORK( 2*N+J+JA-1 )
                        DO 350 JR = 1, J - 1
                           WORK( 2*N+JR ) = WORK( 2*N+JR ) -
     $                                      CREALA*S( JR, J+JA-1 ) +
     $                                      CREALB*P( JR, J+JA-1 )
  350                   CONTINUE
                     END IF
  360             CONTINUE
               END IF
*
               IL2BY2 = .FALSE.
  370       CONTINUE
*
*           Copy eigenvector to VR, back transforming if
*           HOWMNY='B'.
*
            IEIG = IEIG - NW
            IF( ILBACK ) THEN
*
               DO 410 JW = 0, NW - 1
                  DO 380 JR = 1, N
                     WORK( ( JW+4 )*N+JR ) = WORK( ( JW+2 )*N+1 )*
     $                                       VR( JR, 1 )
  380             CONTINUE
*
*                 A series of compiler directives to defeat
*                 vectorization for the next loop
*
*
                  DO 400 JC = 2, JE
                     DO 390 JR = 1, N
                        WORK( ( JW+4 )*N+JR ) = WORK( ( JW+4 )*N+JR ) +
     $                     WORK( ( JW+2 )*N+JC )*VR( JR, JC )
  390                CONTINUE
  400             CONTINUE
  410          CONTINUE
*
               DO 430 JW = 0, NW - 1
                  DO 420 JR = 1, N
                     VR( JR, IEIG+JW ) = WORK( ( JW+4 )*N+JR )
  420             CONTINUE
  430          CONTINUE
*
               IEND = N
            ELSE
               DO 450 JW = 0, NW - 1
                  DO 440 JR = 1, N
                     VR( JR, IEIG+JW ) = WORK( ( JW+2 )*N+JR )
  440             CONTINUE
  450          CONTINUE
*
               IEND = JE
            END IF
*
*           Scale eigenvector
*
            XMAX = ZERO
            IF( ILCPLX ) THEN
               DO 460 J = 1, IEND
                  XMAX = MAX( XMAX, ABS( VR( J, IEIG ) )+
     $                   ABS( VR( J, IEIG+1 ) ) )
  460          CONTINUE
            ELSE
               DO 470 J = 1, IEND
                  XMAX = MAX( XMAX, ABS( VR( J, IEIG ) ) )
  470          CONTINUE
            END IF
*
            IF( XMAX.GT.SAFMIN ) THEN
               XSCALE = ONE / XMAX
               DO 490 JW = 0, NW - 1
                  DO 480 JR = 1, IEND
                     VR( JR, IEIG+JW ) = XSCALE*VR( JR, IEIG+JW )
  480             CONTINUE
  490          CONTINUE
            END IF
  500    CONTINUE
      END IF
*
      RETURN
*
*     End of STGEVC
*
      END