1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
     225
     226
     227
     228
     229
     230
     231
     232
     233
     234
     235
     236
     237
     238
     239
     240
     241
     242
     243
     244
     245
     246
     247
     248
     249
     250
     251
     252
     253
     254
     255
     256
     257
     258
     259
     260
     261
     262
     263
     264
     265
     266
     267
     268
     269
     270
     271
     272
     273
     274
     275
     276
     277
     278
     279
     280
     281
     282
     283
     284
     285
     286
     287
     288
     289
     290
     291
     292
     293
     294
     295
     296
     297
     298
     299
     300
     301
     302
     303
     304
     305
     306
     307
     308
     309
     310
     311
     312
     313
     314
     315
     316
     317
     318
     319
     320
     321
     322
     323
     324
     325
     326
     327
     328
     329
     330
     331
     332
     333
     334
     335
     336
     337
     338
     339
     340
     341
     342
     343
     344
     345
     346
     347
     348
     349
     350
     351
     352
     353
     354
     355
     356
     357
     358
     359
     360
     361
     362
     363
     364
     365
     366
     367
     368
     369
     370
     371
     372
     373
     374
     375
     376
     377
     378
     379
     380
     381
     382
     383
     384
     385
     386
     387
     388
     389
     390
     391
     392
     393
     394
     395
     396
     397
     398
     399
     400
     401
     402
     403
     404
     405
     406
     407
     408
     409
     410
     411
     412
     413
     414
     415
     416
     417
     418
     419
     420
     421
     422
     423
     424
     425
     426
     427
     428
     429
     430
     431
     432
     433
     434
     435
     436
     437
     438
     439
     440
     441
     442
     443
     444
     445
     446
     447
     448
     449
     450
     451
     452
     453
     454
     455
     456
     457
     458
     459
     460
     461
     462
     463
     464
     465
     466
     467
     468
     469
     470
     471
     472
     473
     474
     475
     476
     477
     478
     479
     480
     481
     482
     483
     484
     485
     486
     487
     488
     489
     490
     491
     492
     493
     494
     495
     496
     497
     498
     499
     500
     501
     502
     503
     504
     505
     506
     507
     508
     509
     510
     511
     512
     513
     514
     515
     516
      SUBROUTINE STGSJA( JOBU, JOBV, JOBQ, M, P, N, K, L, A, LDA, B,
     $                   LDB, TOLA, TOLB, ALPHA, BETA, U, LDU, V, LDV,
     $                   Q, LDQ, WORK, NCYCLE, INFO )
*
*  -- LAPACK routine (version 3.3.1)                                  --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*  -- April 2009                                                      --
*
*     .. Scalar Arguments ..
      CHARACTER          JOBQ, JOBU, JOBV
      INTEGER            INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N,
     $                   NCYCLE, P
      REAL               TOLA, TOLB
*     ..
*     .. Array Arguments ..
      REAL               A( LDA, * ), ALPHA( * ), B( LDB, * ),
     $                   BETA( * ), Q( LDQ, * ), U( LDU, * ),
     $                   V( LDV, * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  STGSJA computes the generalized singular value decomposition (GSVD)
*  of two real upper triangular (or trapezoidal) matrices A and B.
*
*  On entry, it is assumed that matrices A and B have the following
*  forms, which may be obtained by the preprocessing subroutine SGGSVP
*  from a general M-by-N matrix A and P-by-N matrix B:
*
*               N-K-L  K    L
*     A =    K ( 0    A12  A13 ) if M-K-L >= 0;
*            L ( 0     0   A23 )
*        M-K-L ( 0     0    0  )
*
*             N-K-L  K    L
*     A =  K ( 0    A12  A13 ) if M-K-L < 0;
*        M-K ( 0     0   A23 )
*
*             N-K-L  K    L
*     B =  L ( 0     0   B13 )
*        P-L ( 0     0    0  )
*
*  where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular
*  upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0,
*  otherwise A23 is (M-K)-by-L upper trapezoidal.
*
*  On exit,
*
*         U**T *A*Q = D1*( 0 R ),    V**T *B*Q = D2*( 0 R ),
*
*  where U, V and Q are orthogonal matrices.
*  R is a nonsingular upper triangular matrix, and D1 and D2 are
*  ``diagonal'' matrices, which are of the following structures:
*
*  If M-K-L >= 0,
*
*                      K  L
*         D1 =     K ( I  0 )
*                  L ( 0  C )
*              M-K-L ( 0  0 )
*
*                    K  L
*         D2 = L   ( 0  S )
*              P-L ( 0  0 )
*
*                 N-K-L  K    L
*    ( 0 R ) = K (  0   R11  R12 ) K
*              L (  0    0   R22 ) L
*
*  where
*
*    C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),
*    S = diag( BETA(K+1),  ... , BETA(K+L) ),
*    C**2 + S**2 = I.
*
*    R is stored in A(1:K+L,N-K-L+1:N) on exit.
*
*  If M-K-L < 0,
*
*                 K M-K K+L-M
*      D1 =   K ( I  0    0   )
*           M-K ( 0  C    0   )
*
*                   K M-K K+L-M
*      D2 =   M-K ( 0  S    0   )
*           K+L-M ( 0  0    I   )
*             P-L ( 0  0    0   )
*
*                 N-K-L  K   M-K  K+L-M
* ( 0 R ) =    K ( 0    R11  R12  R13  )
*            M-K ( 0     0   R22  R23  )
*          K+L-M ( 0     0    0   R33  )
*
*  where
*  C = diag( ALPHA(K+1), ... , ALPHA(M) ),
*  S = diag( BETA(K+1),  ... , BETA(M) ),
*  C**2 + S**2 = I.
*
*  R = ( R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N) and R33 is stored
*      (  0  R22 R23 )
*  in B(M-K+1:L,N+M-K-L+1:N) on exit.
*
*  The computation of the orthogonal transformation matrices U, V or Q
*  is optional.  These matrices may either be formed explicitly, or they
*  may be postmultiplied into input matrices U1, V1, or Q1.
*
*  Arguments
*  =========
*
*  JOBU    (input) CHARACTER*1
*          = 'U':  U must contain an orthogonal matrix U1 on entry, and
*                  the product U1*U is returned;
*          = 'I':  U is initialized to the unit matrix, and the
*                  orthogonal matrix U is returned;
*          = 'N':  U is not computed.
*
*  JOBV    (input) CHARACTER*1
*          = 'V':  V must contain an orthogonal matrix V1 on entry, and
*                  the product V1*V is returned;
*          = 'I':  V is initialized to the unit matrix, and the
*                  orthogonal matrix V is returned;
*          = 'N':  V is not computed.
*
*  JOBQ    (input) CHARACTER*1
*          = 'Q':  Q must contain an orthogonal matrix Q1 on entry, and
*                  the product Q1*Q is returned;
*          = 'I':  Q is initialized to the unit matrix, and the
*                  orthogonal matrix Q is returned;
*          = 'N':  Q is not computed.
*
*  M       (input) INTEGER
*          The number of rows of the matrix A.  M >= 0.
*
*  P       (input) INTEGER
*          The number of rows of the matrix B.  P >= 0.
*
*  N       (input) INTEGER
*          The number of columns of the matrices A and B.  N >= 0.
*
*  K       (input) INTEGER
*  L       (input) INTEGER
*          K and L specify the subblocks in the input matrices A and B:
*          A23 = A(K+1:MIN(K+L,M),N-L+1:N) and B13 = B(1:L,N-L+1:N)
*          of A and B, whose GSVD is going to be computed by STGSJA.
*          See Further Details.
*
*  A       (input/output) REAL array, dimension (LDA,N)
*          On entry, the M-by-N matrix A.
*          On exit, A(N-K+1:N,1:MIN(K+L,M) ) contains the triangular
*          matrix R or part of R.  See Purpose for details.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A. LDA >= max(1,M).
*
*  B       (input/output) REAL array, dimension (LDB,N)
*          On entry, the P-by-N matrix B.
*          On exit, if necessary, B(M-K+1:L,N+M-K-L+1:N) contains
*          a part of R.  See Purpose for details.
*
*  LDB     (input) INTEGER
*          The leading dimension of the array B. LDB >= max(1,P).
*
*  TOLA    (input) REAL
*  TOLB    (input) REAL
*          TOLA and TOLB are the convergence criteria for the Jacobi-
*          Kogbetliantz iteration procedure. Generally, they are the
*          same as used in the preprocessing step, say
*              TOLA = max(M,N)*norm(A)*MACHEPS,
*              TOLB = max(P,N)*norm(B)*MACHEPS.
*
*  ALPHA   (output) REAL array, dimension (N)
*  BETA    (output) REAL array, dimension (N)
*          On exit, ALPHA and BETA contain the generalized singular
*          value pairs of A and B;
*            ALPHA(1:K) = 1,
*            BETA(1:K)  = 0,
*          and if M-K-L >= 0,
*            ALPHA(K+1:K+L) = diag(C),
*            BETA(K+1:K+L)  = diag(S),
*          or if M-K-L < 0,
*            ALPHA(K+1:M)= C, ALPHA(M+1:K+L)= 0
*            BETA(K+1:M) = S, BETA(M+1:K+L) = 1.
*          Furthermore, if K+L < N,
*            ALPHA(K+L+1:N) = 0 and
*            BETA(K+L+1:N)  = 0.
*
*  U       (input/output) REAL array, dimension (LDU,M)
*          On entry, if JOBU = 'U', U must contain a matrix U1 (usually
*          the orthogonal matrix returned by SGGSVP).
*          On exit,
*          if JOBU = 'I', U contains the orthogonal matrix U;
*          if JOBU = 'U', U contains the product U1*U.
*          If JOBU = 'N', U is not referenced.
*
*  LDU     (input) INTEGER
*          The leading dimension of the array U. LDU >= max(1,M) if
*          JOBU = 'U'; LDU >= 1 otherwise.
*
*  V       (input/output) REAL array, dimension (LDV,P)
*          On entry, if JOBV = 'V', V must contain a matrix V1 (usually
*          the orthogonal matrix returned by SGGSVP).
*          On exit,
*          if JOBV = 'I', V contains the orthogonal matrix V;
*          if JOBV = 'V', V contains the product V1*V.
*          If JOBV = 'N', V is not referenced.
*
*  LDV     (input) INTEGER
*          The leading dimension of the array V. LDV >= max(1,P) if
*          JOBV = 'V'; LDV >= 1 otherwise.
*
*  Q       (input/output) REAL array, dimension (LDQ,N)
*          On entry, if JOBQ = 'Q', Q must contain a matrix Q1 (usually
*          the orthogonal matrix returned by SGGSVP).
*          On exit,
*          if JOBQ = 'I', Q contains the orthogonal matrix Q;
*          if JOBQ = 'Q', Q contains the product Q1*Q.
*          If JOBQ = 'N', Q is not referenced.
*
*  LDQ     (input) INTEGER
*          The leading dimension of the array Q. LDQ >= max(1,N) if
*          JOBQ = 'Q'; LDQ >= 1 otherwise.
*
*  WORK    (workspace) REAL array, dimension (2*N)
*
*  NCYCLE  (output) INTEGER
*          The number of cycles required for convergence.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value.
*          = 1:  the procedure does not converge after MAXIT cycles.
*
*  Internal Parameters
*  ===================
*
*  MAXIT   INTEGER
*          MAXIT specifies the total loops that the iterative procedure
*          may take. If after MAXIT cycles, the routine fails to
*          converge, we return INFO = 1.
*
*  Further Details
*  ===============
*
*  STGSJA essentially uses a variant of Kogbetliantz algorithm to reduce
*  min(L,M-K)-by-L triangular (or trapezoidal) matrix A23 and L-by-L
*  matrix B13 to the form:
*
*           U1**T *A13*Q1 = C1*R1; V1**T *B13*Q1 = S1*R1,
*
*  where U1, V1 and Q1 are orthogonal matrix, and Z**T is the transpose
*  of Z.  C1 and S1 are diagonal matrices satisfying
*
*                C1**2 + S1**2 = I,
*
*  and R1 is an L-by-L nonsingular upper triangular matrix.
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            MAXIT
      PARAMETER          ( MAXIT = 40 )
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
*     ..
*     .. Local Scalars ..
*
      LOGICAL            INITQ, INITU, INITV, UPPER, WANTQ, WANTU, WANTV
      INTEGER            I, J, KCYCLE
      REAL               A1, A2, A3, B1, B2, B3, CSQ, CSU, CSV, ERROR,
     $                   GAMMA, RWK, SNQ, SNU, SNV, SSMIN
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           SCOPY, SLAGS2, SLAPLL, SLARTG, SLASET, SROT,
     $                   SSCAL, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABSMAXMIN
*     ..
*     .. Executable Statements ..
*
*     Decode and test the input parameters
*
      INITU = LSAME( JOBU, 'I' )
      WANTU = INITU .OR. LSAME( JOBU, 'U' )
*
      INITV = LSAME( JOBV, 'I' )
      WANTV = INITV .OR. LSAME( JOBV, 'V' )
*
      INITQ = LSAME( JOBQ, 'I' )
      WANTQ = INITQ .OR. LSAME( JOBQ, 'Q' )
*
      INFO = 0
      IF.NOT.( INITU .OR. WANTU .OR. LSAME( JOBU, 'N' ) ) ) THEN
         INFO = -1
      ELSE IF.NOT.( INITV .OR. WANTV .OR. LSAME( JOBV, 'N' ) ) ) THEN
         INFO = -2
      ELSE IF.NOT.( INITQ .OR. WANTQ .OR. LSAME( JOBQ, 'N' ) ) ) THEN
         INFO = -3
      ELSE IF( M.LT.0 ) THEN
         INFO = -4
      ELSE IF( P.LT.0 ) THEN
         INFO = -5
      ELSE IF( N.LT.0 ) THEN
         INFO = -6
      ELSE IF( LDA.LT.MAX1, M ) ) THEN
         INFO = -10
      ELSE IF( LDB.LT.MAX1, P ) ) THEN
         INFO = -12
      ELSE IF( LDU.LT.1 .OR. ( WANTU .AND. LDU.LT.M ) ) THEN
         INFO = -18
      ELSE IF( LDV.LT.1 .OR. ( WANTV .AND. LDV.LT.P ) ) THEN
         INFO = -20
      ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
         INFO = -22
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'STGSJA'-INFO )
         RETURN
      END IF
*
*     Initialize U, V and Q, if necessary
*
      IF( INITU )
     $   CALL SLASET( 'Full', M, M, ZERO, ONE, U, LDU )
      IF( INITV )
     $   CALL SLASET( 'Full', P, P, ZERO, ONE, V, LDV )
      IF( INITQ )
     $   CALL SLASET( 'Full', N, N, ZERO, ONE, Q, LDQ )
*
*     Loop until convergence
*
      UPPER = .FALSE.
      DO 40 KCYCLE = 1, MAXIT
*
         UPPER = .NOT.UPPER
*
         DO 20 I = 1, L - 1
            DO 10 J = I + 1, L
*
               A1 = ZERO
               A2 = ZERO
               A3 = ZERO
               IF( K+I.LE.M )
     $            A1 = A( K+I, N-L+I )
               IF( K+J.LE.M )
     $            A3 = A( K+J, N-L+J )
*
               B1 = B( I, N-L+I )
               B3 = B( J, N-L+J )
*
               IF( UPPER ) THEN
                  IF( K+I.LE.M )
     $               A2 = A( K+I, N-L+J )
                  B2 = B( I, N-L+J )
               ELSE
                  IF( K+J.LE.M )
     $               A2 = A( K+J, N-L+I )
                  B2 = B( J, N-L+I )
               END IF
*
               CALL SLAGS2( UPPER, A1, A2, A3, B1, B2, B3, CSU, SNU,
     $                      CSV, SNV, CSQ, SNQ )
*
*              Update (K+I)-th and (K+J)-th rows of matrix A: U**T *A
*
               IF( K+J.LE.M )
     $            CALL SROT( L, A( K+J, N-L+1 ), LDA, A( K+I, N-L+1 ),
     $                       LDA, CSU, SNU )
*
*              Update I-th and J-th rows of matrix B: V**T *B
*
               CALL SROT( L, B( J, N-L+1 ), LDB, B( I, N-L+1 ), LDB,
     $                    CSV, SNV )
*
*              Update (N-L+I)-th and (N-L+J)-th columns of matrices
*              A and B: A*Q and B*Q
*
               CALL SROT( MIN( K+L, M ), A( 1, N-L+J ), 1,
     $                    A( 1, N-L+I ), 1, CSQ, SNQ )
*
               CALL SROT( L, B( 1, N-L+J ), 1, B( 1, N-L+I ), 1, CSQ,
     $                    SNQ )
*
               IF( UPPER ) THEN
                  IF( K+I.LE.M )
     $               A( K+I, N-L+J ) = ZERO
                  B( I, N-L+J ) = ZERO
               ELSE
                  IF( K+J.LE.M )
     $               A( K+J, N-L+I ) = ZERO
                  B( J, N-L+I ) = ZERO
               END IF
*
*              Update orthogonal matrices U, V, Q, if desired.
*
               IF( WANTU .AND. K+J.LE.M )
     $            CALL SROT( M, U( 1, K+J ), 1, U( 1, K+I ), 1, CSU,
     $                       SNU )
*
               IF( WANTV )
     $            CALL SROT( P, V( 1, J ), 1, V( 1, I ), 1, CSV, SNV )
*
               IF( WANTQ )
     $            CALL SROT( N, Q( 1, N-L+J ), 1, Q( 1, N-L+I ), 1, CSQ,
     $                       SNQ )
*
   10       CONTINUE
   20    CONTINUE
*
         IF.NOT.UPPER ) THEN
*
*           The matrices A13 and B13 were lower triangular at the start
*           of the cycle, and are now upper triangular.
*
*           Convergence test: test the parallelism of the corresponding
*           rows of A and B.
*
            ERROR = ZERO
            DO 30 I = 1MIN( L, M-K )
               CALL SCOPY( L-I+1, A( K+I, N-L+I ), LDA, WORK, 1 )
               CALL SCOPY( L-I+1, B( I, N-L+I ), LDB, WORK( L+1 ), 1 )
               CALL SLAPLL( L-I+1, WORK, 1, WORK( L+1 ), 1, SSMIN )
               ERROR = MAX( ERROR, SSMIN )
   30       CONTINUE
*
            IFABS( ERROR ).LE.MIN( TOLA, TOLB ) )
     $         GO TO 50
         END IF
*
*        End of cycle loop
*
   40 CONTINUE
*
*     The algorithm has not converged after MAXIT cycles.
*
      INFO = 1
      GO TO 100
*
   50 CONTINUE
*
*     If ERROR <= MIN(TOLA,TOLB), then the algorithm has converged.
*     Compute the generalized singular value pairs (ALPHA, BETA), and
*     set the triangular matrix R to array A.
*
      DO 60 I = 1, K
         ALPHA( I ) = ONE
         BETA( I ) = ZERO
   60 CONTINUE
*
      DO 70 I = 1MIN( L, M-K )
*
         A1 = A( K+I, N-L+I )
         B1 = B( I, N-L+I )
*
         IF( A1.NE.ZERO ) THEN
            GAMMA = B1 / A1
*
*           change sign if necessary
*
            IFGAMMA.LT.ZERO ) THEN
               CALL SSCAL( L-I+1-ONE, B( I, N-L+I ), LDB )
               IF( WANTV )
     $            CALL SSCAL( P, -ONE, V( 1, I ), 1 )
            END IF
*
            CALL SLARTG( ABSGAMMA ), ONE, BETA( K+I ), ALPHA( K+I ),
     $                   RWK )
*
            IF( ALPHA( K+I ).GE.BETA( K+I ) ) THEN
               CALL SSCAL( L-I+1, ONE / ALPHA( K+I ), A( K+I, N-L+I ),
     $                     LDA )
            ELSE
               CALL SSCAL( L-I+1, ONE / BETA( K+I ), B( I, N-L+I ),
     $                     LDB )
               CALL SCOPY( L-I+1, B( I, N-L+I ), LDB, A( K+I, N-L+I ),
     $                     LDA )
            END IF
*
         ELSE
*
            ALPHA( K+I ) = ZERO
            BETA( K+I ) = ONE
            CALL SCOPY( L-I+1, B( I, N-L+I ), LDB, A( K+I, N-L+I ),
     $                  LDA )
*
         END IF
*
   70 CONTINUE
*
*     Post-assignment
*
      DO 80 I = M + 1, K + L
         ALPHA( I ) = ZERO
         BETA( I ) = ONE
   80 CONTINUE
*
      IF( K+L.LT.N ) THEN
         DO 90 I = K + L + 1, N
            ALPHA( I ) = ZERO
            BETA( I ) = ZERO
   90    CONTINUE
      END IF
*
  100 CONTINUE
      NCYCLE = KCYCLE
      RETURN
*
*     End of STGSJA
*
      END