1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
     225
     226
     227
     228
     229
     230
     231
     232
     233
     234
     235
     236
     237
     238
     239
     240
     241
     242
     243
     244
     245
     246
     247
     248
     249
     250
     251
     252
     253
     254
     255
     256
     257
     258
     259
     260
     261
     262
     263
     264
     265
     266
     267
     268
     269
     270
     271
     272
     273
     274
     275
     276
     277
     278
     279
     280
     281
     282
     283
     284
     285
     286
     287
     288
     289
     290
     291
     292
     293
     294
     295
     296
     297
     298
     299
     300
     301
     302
     303
     304
     305
     306
     307
     308
     309
     310
     311
     312
     313
     314
     315
     316
     317
     318
     319
     320
     321
     322
     323
     324
     325
     326
     327
     328
     329
     330
     331
     332
     333
     334
     335
     336
     337
     338
     339
     340
     341
     342
     343
     344
     345
     346
     347
     348
     349
     350
     351
     352
     353
     354
     355
     356
     357
     358
     359
     360
     361
     362
     363
     364
     365
     366
     367
     368
     369
     370
     371
     372
     373
     374
     375
     376
     377
     378
     379
     380
     381
     382
     383
     384
     385
     386
     387
     388
     389
     390
     391
     392
     393
     394
     395
     396
     397
     398
     399
     400
     401
     402
     403
     404
     405
     406
     407
     408
     409
     410
     411
     412
     413
     414
     415
     416
     417
     418
     419
     420
     421
     422
     423
     424
     425
     426
     427
     428
     429
     430
     431
     432
     433
     434
     435
     436
     437
     438
     439
     440
     441
     442
     443
     444
     445
     446
     447
     448
     449
     450
     451
     452
     453
     454
     455
     456
     457
     458
     459
     460
     461
     462
     463
     464
     465
     466
     467
     468
     469
     470
     471
     472
     473
     474
     475
     476
     477
     478
     479
     480
     481
     482
     483
     484
     485
     486
     487
     488
     489
     490
     491
     492
     493
     494
     495
     496
     497
     498
     499
     500
     501
     502
     503
     504
     505
     506
     507
     508
     509
     510
     511
     512
     513
     514
     515
     516
     517
     518
     519
     520
     521
     522
     523
     524
     525
     526
     527
     528
     529
     530
     531
     532
     533
     534
     535
     536
     537
     538
     539
     540
     541
     542
     543
     544
     545
     546
     547
     548
     549
     550
     551
     552
     553
     554
     555
     556
     557
     558
     559
     560
     561
     562
     563
     564
     565
     566
     567
     568
     569
     570
     571
     572
     573
     574
     575
     576
     577
     578
     579
     580
     581
      SUBROUTINE STGSNA( JOB, HOWMNY, SELECT, N, A, LDA, B, LDB, VL,
     $                   LDVL, VR, LDVR, S, DIF, MM, M, WORK, LWORK,
     $                   IWORK, INFO )
*
*  -- LAPACK routine (version 3.3.1) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*  -- April 2011                                                      --
*
*     .. Scalar Arguments ..
      CHARACTER          HOWMNY, JOB
      INTEGER            INFO, LDA, LDB, LDVL, LDVR, LWORK, M, MM, N
*     ..
*     .. Array Arguments ..
      LOGICAL            SELECT* )
      INTEGER            IWORK( * )
      REAL               A( LDA, * ), B( LDB, * ), DIF( * ), S( * ),
     $                   VL( LDVL, * ), VR( LDVR, * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  STGSNA estimates reciprocal condition numbers for specified
*  eigenvalues and/or eigenvectors of a matrix pair (A, B) in
*  generalized real Schur canonical form (or of any matrix pair
*  (Q*A*Z**T, Q*B*Z**T) with orthogonal matrices Q and Z, where
*  Z**T denotes the transpose of Z.
*
*  (A, B) must be in generalized real Schur form (as returned by SGGES),
*  i.e. A is block upper triangular with 1-by-1 and 2-by-2 diagonal
*  blocks. B is upper triangular.
*
*
*  Arguments
*  =========
*
*  JOB     (input) CHARACTER*1
*          Specifies whether condition numbers are required for
*          eigenvalues (S) or eigenvectors (DIF):
*          = 'E': for eigenvalues only (S);
*          = 'V': for eigenvectors only (DIF);
*          = 'B': for both eigenvalues and eigenvectors (S and DIF).
*
*  HOWMNY  (input) CHARACTER*1
*          = 'A': compute condition numbers for all eigenpairs;
*          = 'S': compute condition numbers for selected eigenpairs
*                 specified by the array SELECT.
*
*  SELECT  (input) LOGICAL array, dimension (N)
*          If HOWMNY = 'S', SELECT specifies the eigenpairs for which
*          condition numbers are required. To select condition numbers
*          for the eigenpair corresponding to a real eigenvalue w(j),
*          SELECT(j) must be set to .TRUE.. To select condition numbers
*          corresponding to a complex conjugate pair of eigenvalues w(j)
*          and w(j+1), either SELECT(j) or SELECT(j+1) or both, must be
*          set to .TRUE..
*          If HOWMNY = 'A', SELECT is not referenced.
*
*  N       (input) INTEGER
*          The order of the square matrix pair (A, B). N >= 0.
*
*  A       (input) REAL array, dimension (LDA,N)
*          The upper quasi-triangular matrix A in the pair (A,B).
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A. LDA >= max(1,N).
*
*  B       (input) REAL array, dimension (LDB,N)
*          The upper triangular matrix B in the pair (A,B).
*
*  LDB     (input) INTEGER
*          The leading dimension of the array B. LDB >= max(1,N).
*
*  VL      (input) REAL array, dimension (LDVL,M)
*          If JOB = 'E' or 'B', VL must contain left eigenvectors of
*          (A, B), corresponding to the eigenpairs specified by HOWMNY
*          and SELECT. The eigenvectors must be stored in consecutive
*          columns of VL, as returned by STGEVC.
*          If JOB = 'V', VL is not referenced.
*
*  LDVL    (input) INTEGER
*          The leading dimension of the array VL. LDVL >= 1.
*          If JOB = 'E' or 'B', LDVL >= N.
*
*  VR      (input) REAL array, dimension (LDVR,M)
*          If JOB = 'E' or 'B', VR must contain right eigenvectors of
*          (A, B), corresponding to the eigenpairs specified by HOWMNY
*          and SELECT. The eigenvectors must be stored in consecutive
*          columns ov VR, as returned by STGEVC.
*          If JOB = 'V', VR is not referenced.
*
*  LDVR    (input) INTEGER
*          The leading dimension of the array VR. LDVR >= 1.
*          If JOB = 'E' or 'B', LDVR >= N.
*
*  S       (output) REAL array, dimension (MM)
*          If JOB = 'E' or 'B', the reciprocal condition numbers of the
*          selected eigenvalues, stored in consecutive elements of the
*          array. For a complex conjugate pair of eigenvalues two
*          consecutive elements of S are set to the same value. Thus
*          S(j), DIF(j), and the j-th columns of VL and VR all
*          correspond to the same eigenpair (but not in general the
*          j-th eigenpair, unless all eigenpairs are selected).
*          If JOB = 'V', S is not referenced.
*
*  DIF     (output) REAL array, dimension (MM)
*          If JOB = 'V' or 'B', the estimated reciprocal condition
*          numbers of the selected eigenvectors, stored in consecutive
*          elements of the array. For a complex eigenvector two
*          consecutive elements of DIF are set to the same value. If
*          the eigenvalues cannot be reordered to compute DIF(j), DIF(j)
*          is set to 0; this can only occur when the true value would be
*          very small anyway.
*          If JOB = 'E', DIF is not referenced.
*
*  MM      (input) INTEGER
*          The number of elements in the arrays S and DIF. MM >= M.
*
*  M       (output) INTEGER
*          The number of elements of the arrays S and DIF used to store
*          the specified condition numbers; for each selected real
*          eigenvalue one element is used, and for each selected complex
*          conjugate pair of eigenvalues, two elements are used.
*          If HOWMNY = 'A', M is set to N.
*
*  WORK    (workspace/output) REAL array, dimension (MAX(1,LWORK))
*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
*  LWORK   (input) INTEGER
*          The dimension of the array WORK. LWORK >= max(1,N).
*          If JOB = 'V' or 'B' LWORK >= 2*N*(N+2)+16.
*
*          If LWORK = -1, then a workspace query is assumed; the routine
*          only calculates the optimal size of the WORK array, returns
*          this value as the first entry of the WORK array, and no error
*          message related to LWORK is issued by XERBLA.
*
*  IWORK   (workspace) INTEGER array, dimension (N + 6)
*          If JOB = 'E', IWORK is not referenced.
*
*  INFO    (output) INTEGER
*          =0: Successful exit
*          <0: If INFO = -i, the i-th argument had an illegal value
*
*
*  Further Details
*  ===============
*
*  The reciprocal of the condition number of a generalized eigenvalue
*  w = (a, b) is defined as
*
*       S(w) = (|u**TAv|**2 + |u**TBv|**2)**(1/2) / (norm(u)*norm(v))
*
*  where u and v are the left and right eigenvectors of (A, B)
*  corresponding to w; |z| denotes the absolute value of the complex
*  number, and norm(u) denotes the 2-norm of the vector u.
*  The pair (a, b) corresponds to an eigenvalue w = a/b (= u**TAv/u**TBv)
*  of the matrix pair (A, B). If both a and b equal zero, then (A B) is
*  singular and S(I) = -1 is returned.
*
*  An approximate error bound on the chordal distance between the i-th
*  computed generalized eigenvalue w and the corresponding exact
*  eigenvalue lambda is
*
*       chord(w, lambda) <= EPS * norm(A, B) / S(I)
*
*  where EPS is the machine precision.
*
*  The reciprocal of the condition number DIF(i) of right eigenvector u
*  and left eigenvector v corresponding to the generalized eigenvalue w
*  is defined as follows:
*
*  a) If the i-th eigenvalue w = (a,b) is real
*
*     Suppose U and V are orthogonal transformations such that
*
*              U**T*(A, B)*V  = (S, T) = ( a   *  ) ( b  *  )  1
*                                        ( 0  S22 ),( 0 T22 )  n-1
*                                          1  n-1     1 n-1
*
*     Then the reciprocal condition number DIF(i) is
*
*                Difl((a, b), (S22, T22)) = sigma-min( Zl ),
*
*     where sigma-min(Zl) denotes the smallest singular value of the
*     2(n-1)-by-2(n-1) matrix
*
*         Zl = [ kron(a, In-1)  -kron(1, S22) ]
*              [ kron(b, In-1)  -kron(1, T22) ] .
*
*     Here In-1 is the identity matrix of size n-1. kron(X, Y) is the
*     Kronecker product between the matrices X and Y.
*
*     Note that if the default method for computing DIF(i) is wanted
*     (see SLATDF), then the parameter DIFDRI (see below) should be
*     changed from 3 to 4 (routine SLATDF(IJOB = 2 will be used)).
*     See STGSYL for more details.
*
*  b) If the i-th and (i+1)-th eigenvalues are complex conjugate pair,
*
*     Suppose U and V are orthogonal transformations such that
*
*              U**T*(A, B)*V = (S, T) = ( S11  *   ) ( T11  *  )  2
*                                       ( 0    S22 ),( 0    T22) n-2
*                                         2    n-2     2    n-2
*
*     and (S11, T11) corresponds to the complex conjugate eigenvalue
*     pair (w, conjg(w)). There exist unitary matrices U1 and V1 such
*     that
*
*       U1**T*S11*V1 = ( s11 s12 ) and U1**T*T11*V1 = ( t11 t12 )
*                      (  0  s22 )                    (  0  t22 )
*
*     where the generalized eigenvalues w = s11/t11 and
*     conjg(w) = s22/t22.
*
*     Then the reciprocal condition number DIF(i) is bounded by
*
*         min( d1, max( 1, |real(s11)/real(s22)| )*d2 )
*
*     where, d1 = Difl((s11, t11), (s22, t22)) = sigma-min(Z1), where
*     Z1 is the complex 2-by-2 matrix
*
*              Z1 =  [ s11  -s22 ]
*                    [ t11  -t22 ],
*
*     This is done by computing (using real arithmetic) the
*     roots of the characteristical polynomial det(Z1**T * Z1 - lambda I),
*     where Z1**T denotes the transpose of Z1 and det(X) denotes
*     the determinant of X.
*
*     and d2 is an upper bound on Difl((S11, T11), (S22, T22)), i.e. an
*     upper bound on sigma-min(Z2), where Z2 is (2n-2)-by-(2n-2)
*
*              Z2 = [ kron(S11**T, In-2)  -kron(I2, S22) ]
*                   [ kron(T11**T, In-2)  -kron(I2, T22) ]
*
*     Note that if the default method for computing DIF is wanted (see
*     SLATDF), then the parameter DIFDRI (see below) should be changed
*     from 3 to 4 (routine SLATDF(IJOB = 2 will be used)). See STGSYL
*     for more details.
*
*  For each eigenvalue/vector specified by SELECT, DIF stores a
*  Frobenius norm-based estimate of Difl.
*
*  An approximate error bound for the i-th computed eigenvector VL(i) or
*  VR(i) is given by
*
*             EPS * norm(A, B) / DIF(i).
*
*  See ref. [2-3] for more details and further references.
*
*  Based on contributions by
*     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
*     Umea University, S-901 87 Umea, Sweden.
*
*  References
*  ==========
*
*  [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
*      Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
*      M.S. Moonen et al (eds), Linear Algebra for Large Scale and
*      Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
*
*  [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
*      Eigenvalues of a Regular Matrix Pair (A, B) and Condition
*      Estimation: Theory, Algorithms and Software,
*      Report UMINF - 94.04, Department of Computing Science, Umea
*      University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working
*      Note 87. To appear in Numerical Algorithms, 1996.
*
*  [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
*      for Solving the Generalized Sylvester Equation and Estimating the
*      Separation between Regular Matrix Pairs, Report UMINF - 93.23,
*      Department of Computing Science, Umea University, S-901 87 Umea,
*      Sweden, December 1993, Revised April 1994, Also as LAPACK Working
*      Note 75.  To appear in ACM Trans. on Math. Software, Vol 22,
*      No 1, 1996.
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            DIFDRI
      PARAMETER          ( DIFDRI = 3 )
      REAL               ZERO, ONE, TWO, FOUR
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0, TWO = 2.0E+0,
     $                   FOUR = 4.0E+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            LQUERY, PAIR, SOMCON, WANTBH, WANTDF, WANTS
      INTEGER            I, IERR, IFST, ILST, IZ, K, KS, LWMIN, N1, N2
      REAL               ALPHAI, ALPHAR, ALPRQT, BETA, C1, C2, COND,
     $                   EPS, LNRM, RNRM, ROOT1, ROOT2, SCALE, SMLNUM,
     $                   TMPII, TMPIR, TMPRI, TMPRR, UHAV, UHAVI, UHBV,
     $                   UHBVI
*     ..
*     .. Local Arrays ..
      REAL               DUMMY( 1 ), DUMMY1( 1 )
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      REAL               SDOT, SLAMCH, SLAPY2, SNRM2
      EXTERNAL           LSAME, SDOT, SLAMCH, SLAPY2, SNRM2
*     ..
*     .. External Subroutines ..
      EXTERNAL           SGEMV, SLACPY, SLAG2, STGEXC, STGSYL, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAXMINSQRT
*     ..
*     .. Executable Statements ..
*
*     Decode and test the input parameters
*
      WANTBH = LSAME( JOB, 'B' )
      WANTS = LSAME( JOB, 'E' ) .OR. WANTBH
      WANTDF = LSAME( JOB, 'V' ) .OR. WANTBH
*
      SOMCON = LSAME( HOWMNY, 'S' )
*
      INFO = 0
      LQUERY = ( LWORK.EQ.-1 )
*
      IF.NOT.WANTS .AND. .NOT.WANTDF ) THEN
         INFO = -1
      ELSE IF.NOT.LSAME( HOWMNY, 'A' ) .AND. .NOT.SOMCON ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -4
      ELSE IF( LDA.LT.MAX1, N ) ) THEN
         INFO = -6
      ELSE IF( LDB.LT.MAX1, N ) ) THEN
         INFO = -8
      ELSE IF( WANTS .AND. LDVL.LT.N ) THEN
         INFO = -10
      ELSE IF( WANTS .AND. LDVR.LT.N ) THEN
         INFO = -12
      ELSE
*
*        Set M to the number of eigenpairs for which condition numbers
*        are required, and test MM.
*
         IF( SOMCON ) THEN
            M = 0
            PAIR = .FALSE.
            DO 10 K = 1, N
               IF( PAIR ) THEN
                  PAIR = .FALSE.
               ELSE
                  IF( K.LT.N ) THEN
                     IF( A( K+1, K ).EQ.ZERO ) THEN
                        IFSELECT( K ) )
     $                     M = M + 1
                     ELSE
                        PAIR = .TRUE.
                        IFSELECT( K ) .OR. SELECT( K+1 ) )
     $                     M = M + 2
                     END IF
                  ELSE
                     IFSELECT( N ) )
     $                  M = M + 1
                  END IF
               END IF
   10       CONTINUE
         ELSE
            M = N
         END IF
*
         IF( N.EQ.0 ) THEN
            LWMIN = 1
         ELSE IF( LSAME( JOB, 'V' ) .OR. LSAME( JOB, 'B' ) ) THEN
            LWMIN = 2*N*( N + 2 ) + 16
         ELSE
            LWMIN = N
         END IF
         WORK( 1 ) = LWMIN
*
         IF( MM.LT.M ) THEN
            INFO = -15
         ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
            INFO = -18
         END IF
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'STGSNA'-INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
*     Get machine constants
*
      EPS = SLAMCH( 'P' )
      SMLNUM = SLAMCH( 'S' ) / EPS
      KS = 0
      PAIR = .FALSE.
*
      DO 20 K = 1, N
*
*        Determine whether A(k,k) begins a 1-by-1 or 2-by-2 block.
*
         IF( PAIR ) THEN
            PAIR = .FALSE.
            GO TO 20
         ELSE
            IF( K.LT.N )
     $         PAIR = A( K+1, K ).NE.ZERO
         END IF
*
*        Determine whether condition numbers are required for the k-th
*        eigenpair.
*
         IF( SOMCON ) THEN
            IF( PAIR ) THEN
               IF.NOT.SELECT( K ) .AND. .NOT.SELECT( K+1 ) )
     $            GO TO 20
            ELSE
               IF.NOT.SELECT( K ) )
     $            GO TO 20
            END IF
         END IF
*
         KS = KS + 1
*
         IF( WANTS ) THEN
*
*           Compute the reciprocal condition number of the k-th
*           eigenvalue.
*
            IF( PAIR ) THEN
*
*              Complex eigenvalue pair.
*
               RNRM = SLAPY2( SNRM2( N, VR( 1, KS ), 1 ),
     $                SNRM2( N, VR( 1, KS+1 ), 1 ) )
               LNRM = SLAPY2( SNRM2( N, VL( 1, KS ), 1 ),
     $                SNRM2( N, VL( 1, KS+1 ), 1 ) )
               CALL SGEMV( 'N', N, N, ONE, A, LDA, VR( 1, KS ), 1, ZERO,
     $                     WORK, 1 )
               TMPRR = SDOT( N, WORK, 1, VL( 1, KS ), 1 )
               TMPRI = SDOT( N, WORK, 1, VL( 1, KS+1 ), 1 )
               CALL SGEMV( 'N', N, N, ONE, A, LDA, VR( 1, KS+1 ), 1,
     $                     ZERO, WORK, 1 )
               TMPII = SDOT( N, WORK, 1, VL( 1, KS+1 ), 1 )
               TMPIR = SDOT( N, WORK, 1, VL( 1, KS ), 1 )
               UHAV = TMPRR + TMPII
               UHAVI = TMPIR - TMPRI
               CALL SGEMV( 'N', N, N, ONE, B, LDB, VR( 1, KS ), 1, ZERO,
     $                     WORK, 1 )
               TMPRR = SDOT( N, WORK, 1, VL( 1, KS ), 1 )
               TMPRI = SDOT( N, WORK, 1, VL( 1, KS+1 ), 1 )
               CALL SGEMV( 'N', N, N, ONE, B, LDB, VR( 1, KS+1 ), 1,
     $                     ZERO, WORK, 1 )
               TMPII = SDOT( N, WORK, 1, VL( 1, KS+1 ), 1 )
               TMPIR = SDOT( N, WORK, 1, VL( 1, KS ), 1 )
               UHBV = TMPRR + TMPII
               UHBVI = TMPIR - TMPRI
               UHAV = SLAPY2( UHAV, UHAVI )
               UHBV = SLAPY2( UHBV, UHBVI )
               COND = SLAPY2( UHAV, UHBV )
               S( KS ) = COND / ( RNRM*LNRM )
               S( KS+1 ) = S( KS )
*
            ELSE
*
*              Real eigenvalue.
*
               RNRM = SNRM2( N, VR( 1, KS ), 1 )
               LNRM = SNRM2( N, VL( 1, KS ), 1 )
               CALL SGEMV( 'N', N, N, ONE, A, LDA, VR( 1, KS ), 1, ZERO,
     $                     WORK, 1 )
               UHAV = SDOT( N, WORK, 1, VL( 1, KS ), 1 )
               CALL SGEMV( 'N', N, N, ONE, B, LDB, VR( 1, KS ), 1, ZERO,
     $                     WORK, 1 )
               UHBV = SDOT( N, WORK, 1, VL( 1, KS ), 1 )
               COND = SLAPY2( UHAV, UHBV )
               IF( COND.EQ.ZERO ) THEN
                  S( KS ) = -ONE
               ELSE
                  S( KS ) = COND / ( RNRM*LNRM )
               END IF
            END IF
         END IF
*
         IF( WANTDF ) THEN
            IF( N.EQ.1 ) THEN
               DIF( KS ) = SLAPY2( A( 11 ), B( 11 ) )
               GO TO 20
            END IF
*
*           Estimate the reciprocal condition number of the k-th
*           eigenvectors.
            IF( PAIR ) THEN
*
*              Copy the  2-by 2 pencil beginning at (A(k,k), B(k, k)).
*              Compute the eigenvalue(s) at position K.
*
               WORK( 1 ) = A( K, K )
               WORK( 2 ) = A( K+1, K )
               WORK( 3 ) = A( K, K+1 )
               WORK( 4 ) = A( K+1, K+1 )
               WORK( 5 ) = B( K, K )
               WORK( 6 ) = B( K+1, K )
               WORK( 7 ) = B( K, K+1 )
               WORK( 8 ) = B( K+1, K+1 )
               CALL SLAG2( WORK, 2, WORK( 5 ), 2, SMLNUM*EPS, BETA,
     $                     DUMMY1( 1 ), ALPHAR, DUMMY( 1 ), ALPHAI )
               ALPRQT = ONE
               C1 = TWO*( ALPHAR*ALPHAR+ALPHAI*ALPHAI+BETA*BETA )
               C2 = FOUR*BETA*BETA*ALPHAI*ALPHAI
               ROOT1 = C1 + SQRT( C1*C1-4.0*C2 )
               ROOT2 = C2 / ROOT1
               ROOT1 = ROOT1 / TWO
               COND = MINSQRT( ROOT1 ), SQRT( ROOT2 ) )
            END IF
*
*           Copy the matrix (A, B) to the array WORK and swap the
*           diagonal block beginning at A(k,k) to the (1,1) position.
*
            CALL SLACPY( 'Full', N, N, A, LDA, WORK, N )
            CALL SLACPY( 'Full', N, N, B, LDB, WORK( N*N+1 ), N )
            IFST = K
            ILST = 1
*
            CALL STGEXC( .FALSE..FALSE., N, WORK, N, WORK( N*N+1 ), N,
     $                   DUMMY, 1, DUMMY1, 1, IFST, ILST,
     $                   WORK( N*N*2+1 ), LWORK-2*N*N, IERR )
*
            IF( IERR.GT.0 ) THEN
*
*              Ill-conditioned problem - swap rejected.
*
               DIF( KS ) = ZERO
            ELSE
*
*              Reordering successful, solve generalized Sylvester
*              equation for R and L,
*                         A22 * R - L * A11 = A12
*                         B22 * R - L * B11 = B12,
*              and compute estimate of Difl((A11,B11), (A22, B22)).
*
               N1 = 1
               IF( WORK( 2 ).NE.ZERO )
     $            N1 = 2
               N2 = N - N1
               IF( N2.EQ.0 ) THEN
                  DIF( KS ) = COND
               ELSE
                  I = N*+ 1
                  IZ = 2*N*+ 1
                  CALL STGSYL( 'N', DIFDRI, N2, N1, WORK( N*N1+N1+1 ),
     $                         N, WORK, N, WORK( N1+1 ), N,
     $                         WORK( N*N1+N1+I ), N, WORK( I ), N,
     $                         WORK( N1+I ), N, SCALE, DIF( KS ),
     $                         WORK( IZ+1 ), LWORK-2*N*N, IWORK, IERR )
*
                  IF( PAIR )
     $               DIF( KS ) = MINMAX( ONE, ALPRQT )*DIF( KS ),
     $                           COND )
               END IF
            END IF
            IF( PAIR )
     $         DIF( KS+1 ) = DIF( KS )
         END IF
         IF( PAIR )
     $      KS = KS + 1
*
   20 CONTINUE
      WORK( 1 ) = LWMIN
      RETURN
*
*     End of STGSNA
*
      END