1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
     225
     226
     227
     228
     229
     230
     231
     232
     233
     234
     235
     236
     237
     238
     239
     240
     241
     242
     243
     244
     245
     246
     247
     248
     249
     250
     251
     252
     253
     254
     255
     256
     257
     258
     259
     260
     261
     262
     263
     264
     265
     266
     267
     268
     269
     270
     271
     272
     273
     274
     275
     276
     277
     278
     279
     280
     281
     282
     283
     284
     285
     286
     287
     288
     289
     290
     291
     292
     293
     294
     295
     296
     297
     298
     299
     300
     301
     302
     303
     304
     305
     306
     307
     308
     309
     310
     311
     312
     313
     314
     315
     316
     317
     318
     319
     320
     321
     322
     323
     324
     325
     326
     327
     328
     329
     330
     331
     332
     333
     334
     335
     336
     337
     338
     339
     340
     341
     342
     343
     344
     345
     346
     347
     348
     349
     350
     351
     352
     353
     354
     355
     356
     357
     358
     359
     360
     361
     362
     363
     364
     365
     366
     367
     368
     369
     370
     371
     372
     373
     374
     375
     376
     377
     378
     379
     380
     381
     382
     383
     384
     385
     386
     387
     388
     389
     390
     391
     392
     393
     394
     395
     396
     397
     398
     399
     400
     401
     402
     403
     404
     405
     406
     407
     408
     409
     410
     411
     412
     413
     414
     415
     416
     417
     418
     419
     420
     421
     422
     423
     424
     425
     426
     427
     428
     429
     430
     431
     432
     433
     434
     435
     436
     437
     438
     439
     440
     441
     442
     443
     444
     445
     446
     447
     448
     449
     450
     451
     452
     453
     454
     455
     456
     457
     458
     459
     460
     461
     462
     463
     464
     465
     466
     467
     468
     469
     470
     471
     472
     473
     474
     475
     476
     477
     478
     479
     480
     481
     482
     483
     484
     485
     486
     487
     488
     489
     490
     491
     492
     493
     494
     495
     496
     497
     498
     499
     500
     501
     502
     503
     504
     505
     506
     507
     508
     509
     510
     511
     512
     513
     514
     515
     516
     517
     518
     519
     520
     521
     522
     523
     524
     525
     526
     527
     528
     529
     530
     531
     532
     533
     534
     535
     536
     537
     538
     539
     540
     541
     542
     543
     544
     545
     546
     547
     548
     549
     550
     551
     552
     553
     554
     555
     556
     557
     558
     559
     560
     561
     562
     563
     564
     565
     566
     567
     568
     569
     570
     571
     572
     573
     574
     575
     576
     577
     578
     579
     580
     581
     582
     583
     584
     585
     586
     587
     588
     589
     590
     591
     592
     593
     594
     595
     596
     597
     598
     599
     600
     601
     602
     603
     604
     605
     606
     607
     608
     609
     610
     611
     612
     613
     614
     615
     616
     617
     618
     619
     620
     621
     622
     623
     624
     625
     626
     627
     628
     629
     630
     631
     632
     633
     634
     635
     636
     637
     638
     639
     640
     641
     642
     643
     644
     645
     646
     647
     648
     649
     650
     651
     652
     653
     654
     655
     656
     657
     658
     659
     660
     661
     662
     663
     664
     665
     666
     667
     668
     669
     670
     671
     672
     673
     674
     675
     676
     677
     678
     679
     680
     681
     682
     683
     684
     685
     686
     687
     688
     689
     690
     691
     692
     693
     694
     695
     696
     697
     698
     699
     700
     701
     702
     703
     704
     705
     706
     707
     708
     709
     710
     711
     712
     713
     714
     715
     716
     717
     718
     719
     720
     721
     722
     723
     724
     725
     726
     727
     728
     729
     730
     731
     732
     733
     734
     735
     736
     737
     738
     739
     740
     741
     742
     743
     744
     745
     746
     747
     748
     749
     750
     751
     752
     753
     754
     755
     756
     757
     758
     759
     760
     761
     762
     763
     764
     765
     766
     767
     768
     769
     770
     771
     772
     773
     774
     775
     776
     777
     778
     779
     780
     781
     782
     783
     784
     785
     786
     787
     788
     789
     790
     791
     792
     793
     794
     795
     796
     797
     798
     799
     800
     801
     802
     803
     804
     805
     806
     807
     808
     809
     810
     811
     812
     813
     814
     815
     816
     817
     818
     819
     820
     821
     822
     823
     824
     825
     826
     827
     828
     829
     830
     831
     832
     833
     834
     835
     836
     837
     838
     839
     840
     841
     842
     843
     844
     845
     846
     847
     848
     849
     850
     851
     852
     853
     854
     855
     856
     857
     858
     859
     860
     861
     862
     863
     864
     865
     866
     867
     868
     869
     870
     871
     872
     873
     874
     875
     876
     877
     878
     879
     880
     881
     882
     883
     884
     885
     886
     887
     888
     889
     890
     891
     892
     893
     894
     895
     896
     897
     898
     899
     900
     901
     902
     903
     904
     905
     906
     907
     908
     909
     910
     911
     912
     913
     914
     915
     916
     917
     918
     919
     920
     921
     922
     923
     924
     925
     926
     927
     928
     929
     930
     931
     932
     933
     934
     935
     936
     937
     938
     939
     940
     941
     942
     943
     944
     945
     946
     947
     948
     949
     950
     951
     952
     953
     954
     955
     956
     957
      SUBROUTINE STGSY2( TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC, D,
     $                   LDD, E, LDE, F, LDF, SCALE, RDSUM, RDSCAL,
     $                   IWORK, PQ, INFO )
*
*  -- LAPACK auxiliary routine (version 3.3.1) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*  -- April 2011                                                      --
*
*     .. Scalar Arguments ..
      CHARACTER          TRANS
      INTEGER            IJOB, INFO, LDA, LDB, LDC, LDD, LDE, LDF, M, N,
     $                   PQ
      REAL               RDSCAL, RDSUM, SCALE
*     ..
*     .. Array Arguments ..
      INTEGER            IWORK( * )
      REAL               A( LDA, * ), B( LDB, * ), C( LDC, * ),
     $                   D( LDD, * ), E( LDE, * ), F( LDF, * )
*     ..
*
*  Purpose
*  =======
*
*  STGSY2 solves the generalized Sylvester equation:
*
*              A * R - L * B = scale * C                (1)
*              D * R - L * E = scale * F,
*
*  using Level 1 and 2 BLAS. where R and L are unknown M-by-N matrices,
*  (A, D), (B, E) and (C, F) are given matrix pairs of size M-by-M,
*  N-by-N and M-by-N, respectively, with real entries. (A, D) and (B, E)
*  must be in generalized Schur canonical form, i.e. A, B are upper
*  quasi triangular and D, E are upper triangular. The solution (R, L)
*  overwrites (C, F). 0 <= SCALE <= 1 is an output scaling factor
*  chosen to avoid overflow.
*
*  In matrix notation solving equation (1) corresponds to solve
*  Z*x = scale*b, where Z is defined as
*
*         Z = [ kron(In, A)  -kron(B**T, Im) ]             (2)
*             [ kron(In, D)  -kron(E**T, Im) ],
*
*  Ik is the identity matrix of size k and X**T is the transpose of X.
*  kron(X, Y) is the Kronecker product between the matrices X and Y.
*  In the process of solving (1), we solve a number of such systems
*  where Dim(In), Dim(In) = 1 or 2.
*
*  If TRANS = 'T', solve the transposed system Z**T*y = scale*b for y,
*  which is equivalent to solve for R and L in
*
*              A**T * R  + D**T * L   = scale *  C           (3)
*              R  * B**T + L  * E**T  = scale * -F
*
*  This case is used to compute an estimate of Dif[(A, D), (B, E)] =
*  sigma_min(Z) using reverse communicaton with SLACON.
*
*  STGSY2 also (IJOB >= 1) contributes to the computation in STGSYL
*  of an upper bound on the separation between to matrix pairs. Then
*  the input (A, D), (B, E) are sub-pencils of the matrix pair in
*  STGSYL. See STGSYL for details.
*
*  Arguments
*  =========
*
*  TRANS   (input) CHARACTER*1
*          = 'N', solve the generalized Sylvester equation (1).
*          = 'T': solve the 'transposed' system (3).
*
*  IJOB    (input) INTEGER
*          Specifies what kind of functionality to be performed.
*          = 0: solve (1) only.
*          = 1: A contribution from this subsystem to a Frobenius
*               norm-based estimate of the separation between two matrix
*               pairs is computed. (look ahead strategy is used).
*          = 2: A contribution from this subsystem to a Frobenius
*               norm-based estimate of the separation between two matrix
*               pairs is computed. (SGECON on sub-systems is used.)
*          Not referenced if TRANS = 'T'.
*
*  M       (input) INTEGER
*          On entry, M specifies the order of A and D, and the row
*          dimension of C, F, R and L.
*
*  N       (input) INTEGER
*          On entry, N specifies the order of B and E, and the column
*          dimension of C, F, R and L.
*
*  A       (input) REAL array, dimension (LDA, M)
*          On entry, A contains an upper quasi triangular matrix.
*
*  LDA     (input) INTEGER
*          The leading dimension of the matrix A. LDA >= max(1, M).
*
*  B       (input) REAL array, dimension (LDB, N)
*          On entry, B contains an upper quasi triangular matrix.
*
*  LDB     (input) INTEGER
*          The leading dimension of the matrix B. LDB >= max(1, N).
*
*  C       (input/output) REAL array, dimension (LDC, N)
*          On entry, C contains the right-hand-side of the first matrix
*          equation in (1).
*          On exit, if IJOB = 0, C has been overwritten by the
*          solution R.
*
*  LDC     (input) INTEGER
*          The leading dimension of the matrix C. LDC >= max(1, M).
*
*  D       (input) REAL array, dimension (LDD, M)
*          On entry, D contains an upper triangular matrix.
*
*  LDD     (input) INTEGER
*          The leading dimension of the matrix D. LDD >= max(1, M).
*
*  E       (input) REAL array, dimension (LDE, N)
*          On entry, E contains an upper triangular matrix.
*
*  LDE     (input) INTEGER
*          The leading dimension of the matrix E. LDE >= max(1, N).
*
*  F       (input/output) REAL array, dimension (LDF, N)
*          On entry, F contains the right-hand-side of the second matrix
*          equation in (1).
*          On exit, if IJOB = 0, F has been overwritten by the
*          solution L.
*
*  LDF     (input) INTEGER
*          The leading dimension of the matrix F. LDF >= max(1, M).
*
*  SCALE   (output) REAL
*          On exit, 0 <= SCALE <= 1. If 0 < SCALE < 1, the solutions
*          R and L (C and F on entry) will hold the solutions to a
*          slightly perturbed system but the input matrices A, B, D and
*          E have not been changed. If SCALE = 0, R and L will hold the
*          solutions to the homogeneous system with C = F = 0. Normally,
*          SCALE = 1.
*
*  RDSUM   (input/output) REAL
*          On entry, the sum of squares of computed contributions to
*          the Dif-estimate under computation by STGSYL, where the
*          scaling factor RDSCAL (see below) has been factored out.
*          On exit, the corresponding sum of squares updated with the
*          contributions from the current sub-system.
*          If TRANS = 'T' RDSUM is not touched.
*          NOTE: RDSUM only makes sense when STGSY2 is called by STGSYL.
*
*  RDSCAL  (input/output) REAL
*          On entry, scaling factor used to prevent overflow in RDSUM.
*          On exit, RDSCAL is updated w.r.t. the current contributions
*          in RDSUM.
*          If TRANS = 'T', RDSCAL is not touched.
*          NOTE: RDSCAL only makes sense when STGSY2 is called by
*                STGSYL.
*
*  IWORK   (workspace) INTEGER array, dimension (M+N+2)
*
*  PQ      (output) INTEGER
*          On exit, the number of subsystems (of size 2-by-2, 4-by-4 and
*          8-by-8) solved by this routine.
*
*  INFO    (output) INTEGER
*          On exit, if INFO is set to
*            =0: Successful exit
*            <0: If INFO = -i, the i-th argument had an illegal value.
*            >0: The matrix pairs (A, D) and (B, E) have common or very
*                close eigenvalues.
*
*  Further Details
*  ===============
*
*  Based on contributions by
*     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
*     Umea University, S-901 87 Umea, Sweden.
*
*  =====================================================================
*  Replaced various illegal calls to SCOPY by calls to SLASET.
*  Sven Hammarling, 27/5/02.
*
*     .. Parameters ..
      INTEGER            LDZ
      PARAMETER          ( LDZ = 8 )
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            NOTRAN
      INTEGER            I, IE, IERR, II, IS, ISP1, J, JE, JJ, JS, JSP1,
     $                   K, MB, NB, P, Q, ZDIM
      REAL               ALPHA, SCALOC
*     ..
*     .. Local Arrays ..
      INTEGER            IPIV( LDZ ), JPIV( LDZ )
      REAL               RHS( LDZ ), Z( LDZ, LDZ )
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           SAXPY, SCOPY, SGEMM, SGEMV, SGER, SGESC2,
     $                   SGETC2, SSCAL, SLASET, SLATDF, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     ..
*     .. Executable Statements ..
*
*     Decode and test input parameters
*
      INFO = 0
      IERR = 0
      NOTRAN = LSAME( TRANS, 'N' )
      IF.NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN
         INFO = -1
      ELSE IF( NOTRAN ) THEN
         IF( ( IJOB.LT.0 ) .OR. ( IJOB.GT.2 ) ) THEN
            INFO = -2
         END IF
      END IF
      IF( INFO.EQ.0 ) THEN
         IF( M.LE.0 ) THEN
            INFO = -3
         ELSE IF( N.LE.0 ) THEN
            INFO = -4
         ELSE IF( LDA.LT.MAX1, M ) ) THEN
            INFO = -5
         ELSE IF( LDB.LT.MAX1, N ) ) THEN
            INFO = -8
         ELSE IF( LDC.LT.MAX1, M ) ) THEN
            INFO = -10
         ELSE IF( LDD.LT.MAX1, M ) ) THEN
            INFO = -12
         ELSE IF( LDE.LT.MAX1, N ) ) THEN
            INFO = -14
         ELSE IF( LDF.LT.MAX1, M ) ) THEN
            INFO = -16
         END IF
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'STGSY2'-INFO )
         RETURN
      END IF
*
*     Determine block structure of A
*
      PQ = 0
      P = 0
      I = 1
   10 CONTINUE
      IF( I.GT.M )
     $   GO TO 20
      P = P + 1
      IWORK( P ) = I
      IF( I.EQ.M )
     $   GO TO 20
      IF( A( I+1, I ).NE.ZERO ) THEN
         I = I + 2
      ELSE
         I = I + 1
      END IF
      GO TO 10
   20 CONTINUE
      IWORK( P+1 ) = M + 1
*
*     Determine block structure of B
*
      Q = P + 1
      J = 1
   30 CONTINUE
      IF( J.GT.N )
     $   GO TO 40
      Q = Q + 1
      IWORK( Q ) = J
      IF( J.EQ.N )
     $   GO TO 40
      IF( B( J+1, J ).NE.ZERO ) THEN
         J = J + 2
      ELSE
         J = J + 1
      END IF
      GO TO 30
   40 CONTINUE
      IWORK( Q+1 ) = N + 1
      PQ = P*( Q-P-1 )
*
      IF( NOTRAN ) THEN
*
*        Solve (I, J) - subsystem
*           A(I, I) * R(I, J) - L(I, J) * B(J, J) = C(I, J)
*           D(I, I) * R(I, J) - L(I, J) * E(J, J) = F(I, J)
*        for I = P, P - 1, ..., 1; J = 1, 2, ..., Q
*
         SCALE = ONE
         SCALOC = ONE
         DO 120 J = P + 2, Q
            JS = IWORK( J )
            JSP1 = JS + 1
            JE = IWORK( J+1 ) - 1
            NB = JE - JS + 1
            DO 110 I = P, 1-1
*
               IS = IWORK( I )
               ISP1 = IS + 1
               IE = IWORK( I+1 ) - 1
               MB = IE - IS + 1
               ZDIM = MB*NB*2
*
               IF( ( MB.EQ.1 ) .AND. ( NB.EQ.1 ) ) THEN
*
*                 Build a 2-by-2 system Z * x = RHS
*
                  Z( 11 ) = A( IS, IS )
                  Z( 21 ) = D( IS, IS )
                  Z( 12 ) = -B( JS, JS )
                  Z( 22 ) = -E( JS, JS )
*
*                 Set up right hand side(s)
*
                  RHS( 1 ) = C( IS, JS )
                  RHS( 2 ) = F( IS, JS )
*
*                 Solve Z * x = RHS
*
                  CALL SGETC2( ZDIM, Z, LDZ, IPIV, JPIV, IERR )
                  IF( IERR.GT.0 )
     $               INFO = IERR
*
                  IF( IJOB.EQ.0 ) THEN
                     CALL SGESC2( ZDIM, Z, LDZ, RHS, IPIV, JPIV,
     $                            SCALOC )
                     IF( SCALOC.NE.ONE ) THEN
                        DO 50 K = 1, N
                           CALL SSCAL( M, SCALOC, C( 1, K ), 1 )
                           CALL SSCAL( M, SCALOC, F( 1, K ), 1 )
   50                   CONTINUE
                        SCALE = SCALE*SCALOC
                     END IF
                  ELSE
                     CALL SLATDF( IJOB, ZDIM, Z, LDZ, RHS, RDSUM,
     $                            RDSCAL, IPIV, JPIV )
                  END IF
*
*                 Unpack solution vector(s)
*
                  C( IS, JS ) = RHS( 1 )
                  F( IS, JS ) = RHS( 2 )
*
*                 Substitute R(I, J) and L(I, J) into remaining
*                 equation.
*
                  IF( I.GT.1 ) THEN
                     ALPHA = -RHS( 1 )
                     CALL SAXPY( IS-1, ALPHA, A( 1, IS ), 1, C( 1, JS ),
     $                           1 )
                     CALL SAXPY( IS-1, ALPHA, D( 1, IS ), 1, F( 1, JS ),
     $                           1 )
                  END IF
                  IF( J.LT.Q ) THEN
                     CALL SAXPY( N-JE, RHS( 2 ), B( JS, JE+1 ), LDB,
     $                           C( IS, JE+1 ), LDC )
                     CALL SAXPY( N-JE, RHS( 2 ), E( JS, JE+1 ), LDE,
     $                           F( IS, JE+1 ), LDF )
                  END IF
*
               ELSE IF( ( MB.EQ.1 ) .AND. ( NB.EQ.2 ) ) THEN
*
*                 Build a 4-by-4 system Z * x = RHS
*
                  Z( 11 ) = A( IS, IS )
                  Z( 21 ) = ZERO
                  Z( 31 ) = D( IS, IS )
                  Z( 41 ) = ZERO
*
                  Z( 12 ) = ZERO
                  Z( 22 ) = A( IS, IS )
                  Z( 32 ) = ZERO
                  Z( 42 ) = D( IS, IS )
*
                  Z( 13 ) = -B( JS, JS )
                  Z( 23 ) = -B( JS, JSP1 )
                  Z( 33 ) = -E( JS, JS )
                  Z( 43 ) = -E( JS, JSP1 )
*
                  Z( 14 ) = -B( JSP1, JS )
                  Z( 24 ) = -B( JSP1, JSP1 )
                  Z( 34 ) = ZERO
                  Z( 44 ) = -E( JSP1, JSP1 )
*
*                 Set up right hand side(s)
*
                  RHS( 1 ) = C( IS, JS )
                  RHS( 2 ) = C( IS, JSP1 )
                  RHS( 3 ) = F( IS, JS )
                  RHS( 4 ) = F( IS, JSP1 )
*
*                 Solve Z * x = RHS
*
                  CALL SGETC2( ZDIM, Z, LDZ, IPIV, JPIV, IERR )
                  IF( IERR.GT.0 )
     $               INFO = IERR
*
                  IF( IJOB.EQ.0 ) THEN
                     CALL SGESC2( ZDIM, Z, LDZ, RHS, IPIV, JPIV,
     $                            SCALOC )
                     IF( SCALOC.NE.ONE ) THEN
                        DO 60 K = 1, N
                           CALL SSCAL( M, SCALOC, C( 1, K ), 1 )
                           CALL SSCAL( M, SCALOC, F( 1, K ), 1 )
   60                   CONTINUE
                        SCALE = SCALE*SCALOC
                     END IF
                  ELSE
                     CALL SLATDF( IJOB, ZDIM, Z, LDZ, RHS, RDSUM,
     $                            RDSCAL, IPIV, JPIV )
                  END IF
*
*                 Unpack solution vector(s)
*
                  C( IS, JS ) = RHS( 1 )
                  C( IS, JSP1 ) = RHS( 2 )
                  F( IS, JS ) = RHS( 3 )
                  F( IS, JSP1 ) = RHS( 4 )
*
*                 Substitute R(I, J) and L(I, J) into remaining
*                 equation.
*
                  IF( I.GT.1 ) THEN
                     CALL SGER( IS-1, NB, -ONE, A( 1, IS ), 1, RHS( 1 ),
     $                          1, C( 1, JS ), LDC )
                     CALL SGER( IS-1, NB, -ONE, D( 1, IS ), 1, RHS( 1 ),
     $                          1, F( 1, JS ), LDF )
                  END IF
                  IF( J.LT.Q ) THEN
                     CALL SAXPY( N-JE, RHS( 3 ), B( JS, JE+1 ), LDB,
     $                           C( IS, JE+1 ), LDC )
                     CALL SAXPY( N-JE, RHS( 3 ), E( JS, JE+1 ), LDE,
     $                           F( IS, JE+1 ), LDF )
                     CALL SAXPY( N-JE, RHS( 4 ), B( JSP1, JE+1 ), LDB,
     $                           C( IS, JE+1 ), LDC )
                     CALL SAXPY( N-JE, RHS( 4 ), E( JSP1, JE+1 ), LDE,
     $                           F( IS, JE+1 ), LDF )
                  END IF
*
               ELSE IF( ( MB.EQ.2 ) .AND. ( NB.EQ.1 ) ) THEN
*
*                 Build a 4-by-4 system Z * x = RHS
*
                  Z( 11 ) = A( IS, IS )
                  Z( 21 ) = A( ISP1, IS )
                  Z( 31 ) = D( IS, IS )
                  Z( 41 ) = ZERO
*
                  Z( 12 ) = A( IS, ISP1 )
                  Z( 22 ) = A( ISP1, ISP1 )
                  Z( 32 ) = D( IS, ISP1 )
                  Z( 42 ) = D( ISP1, ISP1 )
*
                  Z( 13 ) = -B( JS, JS )
                  Z( 23 ) = ZERO
                  Z( 33 ) = -E( JS, JS )
                  Z( 43 ) = ZERO
*
                  Z( 14 ) = ZERO
                  Z( 24 ) = -B( JS, JS )
                  Z( 34 ) = ZERO
                  Z( 44 ) = -E( JS, JS )
*
*                 Set up right hand side(s)
*
                  RHS( 1 ) = C( IS, JS )
                  RHS( 2 ) = C( ISP1, JS )
                  RHS( 3 ) = F( IS, JS )
                  RHS( 4 ) = F( ISP1, JS )
*
*                 Solve Z * x = RHS
*
                  CALL SGETC2( ZDIM, Z, LDZ, IPIV, JPIV, IERR )
                  IF( IERR.GT.0 )
     $               INFO = IERR
                  IF( IJOB.EQ.0 ) THEN
                     CALL SGESC2( ZDIM, Z, LDZ, RHS, IPIV, JPIV,
     $                            SCALOC )
                     IF( SCALOC.NE.ONE ) THEN
                        DO 70 K = 1, N
                           CALL SSCAL( M, SCALOC, C( 1, K ), 1 )
                           CALL SSCAL( M, SCALOC, F( 1, K ), 1 )
   70                   CONTINUE
                        SCALE = SCALE*SCALOC
                     END IF
                  ELSE
                     CALL SLATDF( IJOB, ZDIM, Z, LDZ, RHS, RDSUM,
     $                            RDSCAL, IPIV, JPIV )
                  END IF
*
*                 Unpack solution vector(s)
*
                  C( IS, JS ) = RHS( 1 )
                  C( ISP1, JS ) = RHS( 2 )
                  F( IS, JS ) = RHS( 3 )
                  F( ISP1, JS ) = RHS( 4 )
*
*                 Substitute R(I, J) and L(I, J) into remaining
*                 equation.
*
                  IF( I.GT.1 ) THEN
                     CALL SGEMV( 'N', IS-1, MB, -ONE, A( 1, IS ), LDA,
     $                           RHS( 1 ), 1, ONE, C( 1, JS ), 1 )
                     CALL SGEMV( 'N', IS-1, MB, -ONE, D( 1, IS ), LDD,
     $                           RHS( 1 ), 1, ONE, F( 1, JS ), 1 )
                  END IF
                  IF( J.LT.Q ) THEN
                     CALL SGER( MB, N-JE, ONE, RHS( 3 ), 1,
     $                          B( JS, JE+1 ), LDB, C( IS, JE+1 ), LDC )
                     CALL SGER( MB, N-JE, ONE, RHS( 3 ), 1,
     $                          E( JS, JE+1 ), LDE, F( IS, JE+1 ), LDF )
                  END IF
*
               ELSE IF( ( MB.EQ.2 ) .AND. ( NB.EQ.2 ) ) THEN
*
*                 Build an 8-by-8 system Z * x = RHS
*
                  CALL SLASET( 'F', LDZ, LDZ, ZERO, ZERO, Z, LDZ )
*
                  Z( 11 ) = A( IS, IS )
                  Z( 21 ) = A( ISP1, IS )
                  Z( 51 ) = D( IS, IS )
*
                  Z( 12 ) = A( IS, ISP1 )
                  Z( 22 ) = A( ISP1, ISP1 )
                  Z( 52 ) = D( IS, ISP1 )
                  Z( 62 ) = D( ISP1, ISP1 )
*
                  Z( 33 ) = A( IS, IS )
                  Z( 43 ) = A( ISP1, IS )
                  Z( 73 ) = D( IS, IS )
*
                  Z( 34 ) = A( IS, ISP1 )
                  Z( 44 ) = A( ISP1, ISP1 )
                  Z( 74 ) = D( IS, ISP1 )
                  Z( 84 ) = D( ISP1, ISP1 )
*
                  Z( 15 ) = -B( JS, JS )
                  Z( 35 ) = -B( JS, JSP1 )
                  Z( 55 ) = -E( JS, JS )
                  Z( 75 ) = -E( JS, JSP1 )
*
                  Z( 26 ) = -B( JS, JS )
                  Z( 46 ) = -B( JS, JSP1 )
                  Z( 66 ) = -E( JS, JS )
                  Z( 86 ) = -E( JS, JSP1 )
*
                  Z( 17 ) = -B( JSP1, JS )
                  Z( 37 ) = -B( JSP1, JSP1 )
                  Z( 77 ) = -E( JSP1, JSP1 )
*
                  Z( 28 ) = -B( JSP1, JS )
                  Z( 48 ) = -B( JSP1, JSP1 )
                  Z( 88 ) = -E( JSP1, JSP1 )
*
*                 Set up right hand side(s)
*
                  K = 1
                  II = MB*NB + 1
                  DO 80 JJ = 0, NB - 1
                     CALL SCOPY( MB, C( IS, JS+JJ ), 1, RHS( K ), 1 )
                     CALL SCOPY( MB, F( IS, JS+JJ ), 1, RHS( II ), 1 )
                     K = K + MB
                     II = II + MB
   80             CONTINUE
*
*                 Solve Z * x = RHS
*
                  CALL SGETC2( ZDIM, Z, LDZ, IPIV, JPIV, IERR )
                  IF( IERR.GT.0 )
     $               INFO = IERR
                  IF( IJOB.EQ.0 ) THEN
                     CALL SGESC2( ZDIM, Z, LDZ, RHS, IPIV, JPIV,
     $                            SCALOC )
                     IF( SCALOC.NE.ONE ) THEN
                        DO 90 K = 1, N
                           CALL SSCAL( M, SCALOC, C( 1, K ), 1 )
                           CALL SSCAL( M, SCALOC, F( 1, K ), 1 )
   90                   CONTINUE
                        SCALE = SCALE*SCALOC
                     END IF
                  ELSE
                     CALL SLATDF( IJOB, ZDIM, Z, LDZ, RHS, RDSUM,
     $                            RDSCAL, IPIV, JPIV )
                  END IF
*
*                 Unpack solution vector(s)
*
                  K = 1
                  II = MB*NB + 1
                  DO 100 JJ = 0, NB - 1
                     CALL SCOPY( MB, RHS( K ), 1, C( IS, JS+JJ ), 1 )
                     CALL SCOPY( MB, RHS( II ), 1, F( IS, JS+JJ ), 1 )
                     K = K + MB
                     II = II + MB
  100             CONTINUE
*
*                 Substitute R(I, J) and L(I, J) into remaining
*                 equation.
*
                  IF( I.GT.1 ) THEN
                     CALL SGEMM( 'N''N', IS-1, NB, MB, -ONE,
     $                           A( 1, IS ), LDA, RHS( 1 ), MB, ONE,
     $                           C( 1, JS ), LDC )
                     CALL SGEMM( 'N''N', IS-1, NB, MB, -ONE,
     $                           D( 1, IS ), LDD, RHS( 1 ), MB, ONE,
     $                           F( 1, JS ), LDF )
                  END IF
                  IF( J.LT.Q ) THEN
                     K = MB*NB + 1
                     CALL SGEMM( 'N''N', MB, N-JE, NB, ONE, RHS( K ),
     $                           MB, B( JS, JE+1 ), LDB, ONE,
     $                           C( IS, JE+1 ), LDC )
                     CALL SGEMM( 'N''N', MB, N-JE, NB, ONE, RHS( K ),
     $                           MB, E( JS, JE+1 ), LDE, ONE,
     $                           F( IS, JE+1 ), LDF )
                  END IF
*
               END IF
*
  110       CONTINUE
  120    CONTINUE
      ELSE
*
*        Solve (I, J) - subsystem
*             A(I, I)**T * R(I, J) + D(I, I)**T * L(J, J)  =  C(I, J)
*             R(I, I)  * B(J, J) + L(I, J)  * E(J, J)  = -F(I, J)
*        for I = 1, 2, ..., P, J = Q, Q - 1, ..., 1
*
         SCALE = ONE
         SCALOC = ONE
         DO 200 I = 1, P
*
            IS = IWORK( I )
            ISP1 = IS + 1
            IE = IWORK( I+1 ) - 1
            MB = IE - IS + 1
            DO 190 J = Q, P + 2-1
*
               JS = IWORK( J )
               JSP1 = JS + 1
               JE = IWORK( J+1 ) - 1
               NB = JE - JS + 1
               ZDIM = MB*NB*2
               IF( ( MB.EQ.1 ) .AND. ( NB.EQ.1 ) ) THEN
*
*                 Build a 2-by-2 system Z**T * x = RHS
*
                  Z( 11 ) = A( IS, IS )
                  Z( 21 ) = -B( JS, JS )
                  Z( 12 ) = D( IS, IS )
                  Z( 22 ) = -E( JS, JS )
*
*                 Set up right hand side(s)
*
                  RHS( 1 ) = C( IS, JS )
                  RHS( 2 ) = F( IS, JS )
*
*                 Solve Z**T * x = RHS
*
                  CALL SGETC2( ZDIM, Z, LDZ, IPIV, JPIV, IERR )
                  IF( IERR.GT.0 )
     $               INFO = IERR
*
                  CALL SGESC2( ZDIM, Z, LDZ, RHS, IPIV, JPIV, SCALOC )
                  IF( SCALOC.NE.ONE ) THEN
                     DO 130 K = 1, N
                        CALL SSCAL( M, SCALOC, C( 1, K ), 1 )
                        CALL SSCAL( M, SCALOC, F( 1, K ), 1 )
  130                CONTINUE
                     SCALE = SCALE*SCALOC
                  END IF
*
*                 Unpack solution vector(s)
*
                  C( IS, JS ) = RHS( 1 )
                  F( IS, JS ) = RHS( 2 )
*
*                 Substitute R(I, J) and L(I, J) into remaining
*                 equation.
*
                  IF( J.GT.P+2 ) THEN
                     ALPHA = RHS( 1 )
                     CALL SAXPY( JS-1, ALPHA, B( 1, JS ), 1, F( IS, 1 ),
     $                           LDF )
                     ALPHA = RHS( 2 )
                     CALL SAXPY( JS-1, ALPHA, E( 1, JS ), 1, F( IS, 1 ),
     $                           LDF )
                  END IF
                  IF( I.LT.P ) THEN
                     ALPHA = -RHS( 1 )
                     CALL SAXPY( M-IE, ALPHA, A( IS, IE+1 ), LDA,
     $                           C( IE+1, JS ), 1 )
                     ALPHA = -RHS( 2 )
                     CALL SAXPY( M-IE, ALPHA, D( IS, IE+1 ), LDD,
     $                           C( IE+1, JS ), 1 )
                  END IF
*
               ELSE IF( ( MB.EQ.1 ) .AND. ( NB.EQ.2 ) ) THEN
*
*                 Build a 4-by-4 system Z**T * x = RHS
*
                  Z( 11 ) = A( IS, IS )
                  Z( 21 ) = ZERO
                  Z( 31 ) = -B( JS, JS )
                  Z( 41 ) = -B( JSP1, JS )
*
                  Z( 12 ) = ZERO
                  Z( 22 ) = A( IS, IS )
                  Z( 32 ) = -B( JS, JSP1 )
                  Z( 42 ) = -B( JSP1, JSP1 )
*
                  Z( 13 ) = D( IS, IS )
                  Z( 23 ) = ZERO
                  Z( 33 ) = -E( JS, JS )
                  Z( 43 ) = ZERO
*
                  Z( 14 ) = ZERO
                  Z( 24 ) = D( IS, IS )
                  Z( 34 ) = -E( JS, JSP1 )
                  Z( 44 ) = -E( JSP1, JSP1 )
*
*                 Set up right hand side(s)
*
                  RHS( 1 ) = C( IS, JS )
                  RHS( 2 ) = C( IS, JSP1 )
                  RHS( 3 ) = F( IS, JS )
                  RHS( 4 ) = F( IS, JSP1 )
*
*                 Solve Z**T * x = RHS
*
                  CALL SGETC2( ZDIM, Z, LDZ, IPIV, JPIV, IERR )
                  IF( IERR.GT.0 )
     $               INFO = IERR
                  CALL SGESC2( ZDIM, Z, LDZ, RHS, IPIV, JPIV, SCALOC )
                  IF( SCALOC.NE.ONE ) THEN
                     DO 140 K = 1, N
                        CALL SSCAL( M, SCALOC, C( 1, K ), 1 )
                        CALL SSCAL( M, SCALOC, F( 1, K ), 1 )
  140                CONTINUE
                     SCALE = SCALE*SCALOC
                  END IF
*
*                 Unpack solution vector(s)
*
                  C( IS, JS ) = RHS( 1 )
                  C( IS, JSP1 ) = RHS( 2 )
                  F( IS, JS ) = RHS( 3 )
                  F( IS, JSP1 ) = RHS( 4 )
*
*                 Substitute R(I, J) and L(I, J) into remaining
*                 equation.
*
                  IF( J.GT.P+2 ) THEN
                     CALL SAXPY( JS-1, RHS( 1 ), B( 1, JS ), 1,
     $                           F( IS, 1 ), LDF )
                     CALL SAXPY( JS-1, RHS( 2 ), B( 1, JSP1 ), 1,
     $                           F( IS, 1 ), LDF )
                     CALL SAXPY( JS-1, RHS( 3 ), E( 1, JS ), 1,
     $                           F( IS, 1 ), LDF )
                     CALL SAXPY( JS-1, RHS( 4 ), E( 1, JSP1 ), 1,
     $                           F( IS, 1 ), LDF )
                  END IF
                  IF( I.LT.P ) THEN
                     CALL SGER( M-IE, NB, -ONE, A( IS, IE+1 ), LDA,
     $                          RHS( 1 ), 1, C( IE+1, JS ), LDC )
                     CALL SGER( M-IE, NB, -ONE, D( IS, IE+1 ), LDD,
     $                          RHS( 3 ), 1, C( IE+1, JS ), LDC )
                  END IF
*
               ELSE IF( ( MB.EQ.2 ) .AND. ( NB.EQ.1 ) ) THEN
*
*                 Build a 4-by-4 system Z**T * x = RHS
*
                  Z( 11 ) = A( IS, IS )
                  Z( 21 ) = A( IS, ISP1 )
                  Z( 31 ) = -B( JS, JS )
                  Z( 41 ) = ZERO
*
                  Z( 12 ) = A( ISP1, IS )
                  Z( 22 ) = A( ISP1, ISP1 )
                  Z( 32 ) = ZERO
                  Z( 42 ) = -B( JS, JS )
*
                  Z( 13 ) = D( IS, IS )
                  Z( 23 ) = D( IS, ISP1 )
                  Z( 33 ) = -E( JS, JS )
                  Z( 43 ) = ZERO
*
                  Z( 14 ) = ZERO
                  Z( 24 ) = D( ISP1, ISP1 )
                  Z( 34 ) = ZERO
                  Z( 44 ) = -E( JS, JS )
*
*                 Set up right hand side(s)
*
                  RHS( 1 ) = C( IS, JS )
                  RHS( 2 ) = C( ISP1, JS )
                  RHS( 3 ) = F( IS, JS )
                  RHS( 4 ) = F( ISP1, JS )
*
*                 Solve Z**T * x = RHS
*
                  CALL SGETC2( ZDIM, Z, LDZ, IPIV, JPIV, IERR )
                  IF( IERR.GT.0 )
     $               INFO = IERR
*
                  CALL SGESC2( ZDIM, Z, LDZ, RHS, IPIV, JPIV, SCALOC )
                  IF( SCALOC.NE.ONE ) THEN
                     DO 150 K = 1, N
                        CALL SSCAL( M, SCALOC, C( 1, K ), 1 )
                        CALL SSCAL( M, SCALOC, F( 1, K ), 1 )
  150                CONTINUE
                     SCALE = SCALE*SCALOC
                  END IF
*
*                 Unpack solution vector(s)
*
                  C( IS, JS ) = RHS( 1 )
                  C( ISP1, JS ) = RHS( 2 )
                  F( IS, JS ) = RHS( 3 )
                  F( ISP1, JS ) = RHS( 4 )
*
*                 Substitute R(I, J) and L(I, J) into remaining
*                 equation.
*
                  IF( J.GT.P+2 ) THEN
                     CALL SGER( MB, JS-1, ONE, RHS( 1 ), 1, B( 1, JS ),
     $                          1, F( IS, 1 ), LDF )
                     CALL SGER( MB, JS-1, ONE, RHS( 3 ), 1, E( 1, JS ),
     $                          1, F( IS, 1 ), LDF )
                  END IF
                  IF( I.LT.P ) THEN
                     CALL SGEMV( 'T', MB, M-IE, -ONE, A( IS, IE+1 ),
     $                           LDA, RHS( 1 ), 1, ONE, C( IE+1, JS ),
     $                           1 )
                     CALL SGEMV( 'T', MB, M-IE, -ONE, D( IS, IE+1 ),
     $                           LDD, RHS( 3 ), 1, ONE, C( IE+1, JS ),
     $                           1 )
                  END IF
*
               ELSE IF( ( MB.EQ.2 ) .AND. ( NB.EQ.2 ) ) THEN
*
*                 Build an 8-by-8 system Z**T * x = RHS
*
                  CALL SLASET( 'F', LDZ, LDZ, ZERO, ZERO, Z, LDZ )
*
                  Z( 11 ) = A( IS, IS )
                  Z( 21 ) = A( IS, ISP1 )
                  Z( 51 ) = -B( JS, JS )
                  Z( 71 ) = -B( JSP1, JS )
*
                  Z( 12 ) = A( ISP1, IS )
                  Z( 22 ) = A( ISP1, ISP1 )
                  Z( 62 ) = -B( JS, JS )
                  Z( 82 ) = -B( JSP1, JS )
*
                  Z( 33 ) = A( IS, IS )
                  Z( 43 ) = A( IS, ISP1 )
                  Z( 53 ) = -B( JS, JSP1 )
                  Z( 73 ) = -B( JSP1, JSP1 )
*
                  Z( 34 ) = A( ISP1, IS )
                  Z( 44 ) = A( ISP1, ISP1 )
                  Z( 64 ) = -B( JS, JSP1 )
                  Z( 84 ) = -B( JSP1, JSP1 )
*
                  Z( 15 ) = D( IS, IS )
                  Z( 25 ) = D( IS, ISP1 )
                  Z( 55 ) = -E( JS, JS )
*
                  Z( 26 ) = D( ISP1, ISP1 )
                  Z( 66 ) = -E( JS, JS )
*
                  Z( 37 ) = D( IS, IS )
                  Z( 47 ) = D( IS, ISP1 )
                  Z( 57 ) = -E( JS, JSP1 )
                  Z( 77 ) = -E( JSP1, JSP1 )
*
                  Z( 48 ) = D( ISP1, ISP1 )
                  Z( 68 ) = -E( JS, JSP1 )
                  Z( 88 ) = -E( JSP1, JSP1 )
*
*                 Set up right hand side(s)
*
                  K = 1
                  II = MB*NB + 1
                  DO 160 JJ = 0, NB - 1
                     CALL SCOPY( MB, C( IS, JS+JJ ), 1, RHS( K ), 1 )
                     CALL SCOPY( MB, F( IS, JS+JJ ), 1, RHS( II ), 1 )
                     K = K + MB
                     II = II + MB
  160             CONTINUE
*
*
*                 Solve Z**T * x = RHS
*
                  CALL SGETC2( ZDIM, Z, LDZ, IPIV, JPIV, IERR )
                  IF( IERR.GT.0 )
     $               INFO = IERR
*
                  CALL SGESC2( ZDIM, Z, LDZ, RHS, IPIV, JPIV, SCALOC )
                  IF( SCALOC.NE.ONE ) THEN
                     DO 170 K = 1, N
                        CALL SSCAL( M, SCALOC, C( 1, K ), 1 )
                        CALL SSCAL( M, SCALOC, F( 1, K ), 1 )
  170                CONTINUE
                     SCALE = SCALE*SCALOC
                  END IF
*
*                 Unpack solution vector(s)
*
                  K = 1
                  II = MB*NB + 1
                  DO 180 JJ = 0, NB - 1
                     CALL SCOPY( MB, RHS( K ), 1, C( IS, JS+JJ ), 1 )
                     CALL SCOPY( MB, RHS( II ), 1, F( IS, JS+JJ ), 1 )
                     K = K + MB
                     II = II + MB
  180             CONTINUE
*
*                 Substitute R(I, J) and L(I, J) into remaining
*                 equation.
*
                  IF( J.GT.P+2 ) THEN
                     CALL SGEMM( 'N''T', MB, JS-1, NB, ONE,
     $                           C( IS, JS ), LDC, B( 1, JS ), LDB, ONE,
     $                           F( IS, 1 ), LDF )
                     CALL SGEMM( 'N''T', MB, JS-1, NB, ONE,
     $                           F( IS, JS ), LDF, E( 1, JS ), LDE, ONE,
     $                           F( IS, 1 ), LDF )
                  END IF
                  IF( I.LT.P ) THEN
                     CALL SGEMM( 'T''N', M-IE, NB, MB, -ONE,
     $                           A( IS, IE+1 ), LDA, C( IS, JS ), LDC,
     $                           ONE, C( IE+1, JS ), LDC )
                     CALL SGEMM( 'T''N', M-IE, NB, MB, -ONE,
     $                           D( IS, IE+1 ), LDD, F( IS, JS ), LDF,
     $                           ONE, C( IE+1, JS ), LDC )
                  END IF
*
               END IF
*
  190       CONTINUE
  200    CONTINUE
*
      END IF
      RETURN
*
*     End of STGSY2
*
      END