1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
     225
     226
     227
     228
     229
     230
     231
     232
     233
     234
     235
     236
     237
     238
     239
     240
     241
     242
     243
     244
     245
     246
     247
     248
     249
     250
     251
     252
     253
     254
     255
     256
     257
     258
     259
     260
     261
     262
     263
     264
     265
     266
     267
     268
     269
     270
     271
     272
     273
     274
     275
     276
     277
     278
     279
     280
     281
     282
     283
     284
     285
     286
     287
     288
     289
     290
     291
     292
     293
     294
     295
     296
     297
     298
     299
     300
     301
     302
     303
     304
     305
     306
     307
     308
     309
     310
     311
     312
     313
     314
     315
     316
     317
     318
     319
     320
     321
     322
     323
     324
     325
     326
     327
     328
     329
     330
     331
     332
     333
     334
     335
     336
     337
     338
     339
     340
     341
     342
     343
     344
     345
     346
     347
     348
     349
     350
     351
     352
     353
     354
     355
     356
      SUBROUTINE ZCGESV( N, NRHS, A, LDA, IPIV, B, LDB, X, LDX, WORK,
     $                   SWORK, RWORK, ITER, INFO )
*
*  -- LAPACK PROTOTYPE driver routine (version 3.3.1) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*  -- April 2011                                                      --
*
*     ..
*     .. Scalar Arguments ..
      INTEGER            INFO, ITER, LDA, LDB, LDX, N, NRHS
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * )
      DOUBLE PRECISION   RWORK( * )
      COMPLEX            SWORK( * )
      COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( N, * ),
     $                   X( LDX, * )
*     ..
*
*  Purpose
*  =======
*
*  ZCGESV computes the solution to a complex system of linear equations
*     A * X = B,
*  where A is an N-by-N matrix and X and B are N-by-NRHS matrices.
*
*  ZCGESV first attempts to factorize the matrix in COMPLEX and use this
*  factorization within an iterative refinement procedure to produce a
*  solution with COMPLEX*16 normwise backward error quality (see below).
*  If the approach fails the method switches to a COMPLEX*16
*  factorization and solve.
*
*  The iterative refinement is not going to be a winning strategy if
*  the ratio COMPLEX performance over COMPLEX*16 performance is too
*  small. A reasonable strategy should take the number of right-hand
*  sides and the size of the matrix into account. This might be done
*  with a call to ILAENV in the future. Up to now, we always try
*  iterative refinement.
*
*  The iterative refinement process is stopped if
*      ITER > ITERMAX
*  or for all the RHS we have:
*      RNRM < SQRT(N)*XNRM*ANRM*EPS*BWDMAX
*  where
*      o ITER is the number of the current iteration in the iterative
*        refinement process
*      o RNRM is the infinity-norm of the residual
*      o XNRM is the infinity-norm of the solution
*      o ANRM is the infinity-operator-norm of the matrix A
*      o EPS is the machine epsilon returned by DLAMCH('Epsilon')
*  The value ITERMAX and BWDMAX are fixed to 30 and 1.0D+00
*  respectively.
*
*  Arguments
*  =========
*
*  N       (input) INTEGER
*          The number of linear equations, i.e., the order of the
*          matrix A.  N >= 0.
*
*  NRHS    (input) INTEGER
*          The number of right hand sides, i.e., the number of columns
*          of the matrix B.  NRHS >= 0.
*
*  A       (input/output) COMPLEX*16 array,
*          dimension (LDA,N)
*          On entry, the N-by-N coefficient matrix A.
*          On exit, if iterative refinement has been successfully used
*          (INFO.EQ.0 and ITER.GE.0, see description below), then A is
*          unchanged, if double precision factorization has been used
*          (INFO.EQ.0 and ITER.LT.0, see description below), then the
*          array A contains the factors L and U from the factorization
*          A = P*L*U; the unit diagonal elements of L are not stored.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,N).
*
*  IPIV    (output) INTEGER array, dimension (N)
*          The pivot indices that define the permutation matrix P;
*          row i of the matrix was interchanged with row IPIV(i).
*          Corresponds either to the single precision factorization
*          (if INFO.EQ.0 and ITER.GE.0) or the double precision
*          factorization (if INFO.EQ.0 and ITER.LT.0).
*
*  B       (input) COMPLEX*16 array, dimension (LDB,NRHS)
*          The N-by-NRHS right hand side matrix B.
*
*  LDB     (input) INTEGER
*          The leading dimension of the array B.  LDB >= max(1,N).
*
*  X       (output) COMPLEX*16 array, dimension (LDX,NRHS)
*          If INFO = 0, the N-by-NRHS solution matrix X.
*
*  LDX     (input) INTEGER
*          The leading dimension of the array X.  LDX >= max(1,N).
*
*  WORK    (workspace) COMPLEX*16 array, dimension (N*NRHS)
*          This array is used to hold the residual vectors.
*
*  SWORK   (workspace) COMPLEX array, dimension (N*(N+NRHS))
*          This array is used to use the single precision matrix and the
*          right-hand sides or solutions in single precision.
*
*  RWORK   (workspace) DOUBLE PRECISION array, dimension (N)
*
*  ITER    (output) INTEGER
*          < 0: iterative refinement has failed, COMPLEX*16
*               factorization has been performed
*               -1 : the routine fell back to full precision for
*                    implementation- or machine-specific reasons
*               -2 : narrowing the precision induced an overflow,
*                    the routine fell back to full precision
*               -3 : failure of CGETRF
*               -31: stop the iterative refinement after the 30th
*                    iterations
*          > 0: iterative refinement has been sucessfully used.
*               Returns the number of iterations
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*          > 0:  if INFO = i, U(i,i) computed in COMPLEX*16 is exactly
*                zero.  The factorization has been completed, but the
*                factor U is exactly singular, so the solution
*                could not be computed.
*
*  =====================================================================
*
*     .. Parameters ..
      LOGICAL            DOITREF
      PARAMETER          ( DOITREF = .TRUE. )
*
      INTEGER            ITERMAX
      PARAMETER          ( ITERMAX = 30 )
*
      DOUBLE PRECISION   BWDMAX
      PARAMETER          ( BWDMAX = 1.0E+00 )
*
      COMPLEX*16         NEGONE, ONE
      PARAMETER          ( NEGONE = ( -1.0D+000.0D+00 ),
     $                   ONE = ( 1.0D+000.0D+00 ) )
*
*     .. Local Scalars ..
      INTEGER            I, IITER, PTSA, PTSX
      DOUBLE PRECISION   ANRM, CTE, EPS, RNRM, XNRM
      COMPLEX*16         ZDUM
*
*     .. External Subroutines ..
      EXTERNAL           CGETRS, CGETRF, CLAG2Z, XERBLA, ZAXPY, ZGEMM,
     $                   ZLACPY, ZLAG2C
*     ..
*     .. External Functions ..
      INTEGER            IZAMAX
      DOUBLE PRECISION   DLAMCH, ZLANGE
      EXTERNAL           IZAMAX, DLAMCH, ZLANGE
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABSDBLEMAXSQRT
*     ..
*     .. Statement Functions ..
      DOUBLE PRECISION   CABS1
*     ..
*     .. Statement Function definitions ..
      CABS1( ZDUM ) = ABSDBLE( ZDUM ) ) + ABSDIMAG( ZDUM ) )
*     ..
*     .. Executable Statements ..
*
      INFO = 0
      ITER = 0
*
*     Test the input parameters.
*
      IF( N.LT.0 ) THEN
         INFO = -1
      ELSE IF( NRHS.LT.0 ) THEN
         INFO = -2
      ELSE IF( LDA.LT.MAX1, N ) ) THEN
         INFO = -4
      ELSE IF( LDB.LT.MAX1, N ) ) THEN
         INFO = -7
      ELSE IF( LDX.LT.MAX1, N ) ) THEN
         INFO = -9
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'ZCGESV'-INFO )
         RETURN
      END IF
*
*     Quick return if (N.EQ.0).
*
      IF( N.EQ.0 )
     $   RETURN
*
*     Skip single precision iterative refinement if a priori slower
*     than double precision factorization.
*
      IF.NOT.DOITREF ) THEN
         ITER = -1
         GO TO 40
      END IF
*
*     Compute some constants.
*
      ANRM = ZLANGE( 'I', N, N, A, LDA, RWORK )
      EPS = DLAMCH( 'Epsilon' )
      CTE = ANRM*EPS*SQRTDBLE( N ) )*BWDMAX
*
*     Set the indices PTSA, PTSX for referencing SA and SX in SWORK.
*
      PTSA = 1
      PTSX = PTSA + N*N
*
*     Convert B from double precision to single precision and store the
*     result in SX.
*
      CALL ZLAG2C( N, NRHS, B, LDB, SWORK( PTSX ), N, INFO )
*
      IF( INFO.NE.0 ) THEN
         ITER = -2
         GO TO 40
      END IF
*
*     Convert A from double precision to single precision and store the
*     result in SA.
*
      CALL ZLAG2C( N, N, A, LDA, SWORK( PTSA ), N, INFO )
*
      IF( INFO.NE.0 ) THEN
         ITER = -2
         GO TO 40
      END IF
*
*     Compute the LU factorization of SA.
*
      CALL CGETRF( N, N, SWORK( PTSA ), N, IPIV, INFO )
*
      IF( INFO.NE.0 ) THEN
         ITER = -3
         GO TO 40
      END IF
*
*     Solve the system SA*SX = SB.
*
      CALL CGETRS( 'No transpose', N, NRHS, SWORK( PTSA ), N, IPIV,
     $             SWORK( PTSX ), N, INFO )
*
*     Convert SX back to double precision
*
      CALL CLAG2Z( N, NRHS, SWORK( PTSX ), N, X, LDX, INFO )
*
*     Compute R = B - AX (R is WORK).
*
      CALL ZLACPY( 'All', N, NRHS, B, LDB, WORK, N )
*
      CALL ZGEMM( 'No Transpose''No Transpose', N, NRHS, N, NEGONE, A,
     $            LDA, X, LDX, ONE, WORK, N )
*
*     Check whether the NRHS normwise backward errors satisfy the
*     stopping criterion. If yes, set ITER=0 and return.
*
      DO I = 1, NRHS
         XNRM = CABS1( X( IZAMAX( N, X( 1, I ), 1 ), I ) )
         RNRM = CABS1( WORK( IZAMAX( N, WORK( 1, I ), 1 ), I ) )
         IF( RNRM.GT.XNRM*CTE )
     $      GO TO 10
      END DO
*
*     If we are here, the NRHS normwise backward errors satisfy the
*     stopping criterion. We are good to exit.
*
      ITER = 0
      RETURN
*
   10 CONTINUE
*
      DO 30 IITER = 1, ITERMAX
*
*        Convert R (in WORK) from double precision to single precision
*        and store the result in SX.
*
         CALL ZLAG2C( N, NRHS, WORK, N, SWORK( PTSX ), N, INFO )
*
         IF( INFO.NE.0 ) THEN
            ITER = -2
            GO TO 40
         END IF
*
*        Solve the system SA*SX = SR.
*
         CALL CGETRS( 'No transpose', N, NRHS, SWORK( PTSA ), N, IPIV,
     $                SWORK( PTSX ), N, INFO )
*
*        Convert SX back to double precision and update the current
*        iterate.
*
         CALL CLAG2Z( N, NRHS, SWORK( PTSX ), N, WORK, N, INFO )
*
         DO I = 1, NRHS
            CALL ZAXPY( N, ONE, WORK( 1, I ), 1, X( 1, I ), 1 )
         END DO
*
*        Compute R = B - AX (R is WORK).
*
         CALL ZLACPY( 'All', N, NRHS, B, LDB, WORK, N )
*
         CALL ZGEMM( 'No Transpose''No Transpose', N, NRHS, N, NEGONE,
     $               A, LDA, X, LDX, ONE, WORK, N )
*
*        Check whether the NRHS normwise backward errors satisfy the
*        stopping criterion. If yes, set ITER=IITER>0 and return.
*
         DO I = 1, NRHS
            XNRM = CABS1( X( IZAMAX( N, X( 1, I ), 1 ), I ) )
            RNRM = CABS1( WORK( IZAMAX( N, WORK( 1, I ), 1 ), I ) )
            IF( RNRM.GT.XNRM*CTE )
     $         GO TO 20
         END DO
*
*        If we are here, the NRHS normwise backward errors satisfy the
*        stopping criterion, we are good to exit.
*
         ITER = IITER
*
         RETURN
*
   20    CONTINUE
*
   30 CONTINUE
*
*     If we are at this place of the code, this is because we have
*     performed ITER=ITERMAX iterations and never satisified the stopping
*     criterion, set up the ITER flag accordingly and follow up on double
*     precision routine.
*
      ITER = -ITERMAX - 1
*
   40 CONTINUE
*
*     Single-precision iterative refinement failed to converge to a
*     satisfactory solution, so we resort to double precision.
*
      CALL ZGETRF( N, N, A, LDA, IPIV, INFO )
*
      IF( INFO.NE.0 )
     $   RETURN
*
      CALL ZLACPY( 'All', N, NRHS, B, LDB, X, LDX )
      CALL ZGETRS( 'No transpose', N, NRHS, A, LDA, IPIV, X, LDX,
     $             INFO )
*
      RETURN
*
*     End of ZCGESV.
*
      END