1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
      SUBROUTINE ZGERQ2( M, N, A, LDA, TAU, WORK, INFO )
*
*  -- LAPACK routine (version 3.3.1) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*  -- April 2011                                                      --
*
*     .. Scalar Arguments ..
      INTEGER            INFO, LDA, M, N
*     ..
*     .. Array Arguments ..
      COMPLEX*16         A( LDA, * ), TAU( * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  ZGERQ2 computes an RQ factorization of a complex m by n matrix A:
*  A = R * Q.
*
*  Arguments
*  =========
*
*  M       (input) INTEGER
*          The number of rows of the matrix A.  M >= 0.
*
*  N       (input) INTEGER
*          The number of columns of the matrix A.  N >= 0.
*
*  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
*          On entry, the m by n matrix A.
*          On exit, if m <= n, the upper triangle of the subarray
*          A(1:m,n-m+1:n) contains the m by m upper triangular matrix R;
*          if m >= n, the elements on and above the (m-n)-th subdiagonal
*          contain the m by n upper trapezoidal matrix R; the remaining
*          elements, with the array TAU, represent the unitary matrix
*          Q as a product of elementary reflectors (see Further
*          Details).
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,M).
*
*  TAU     (output) COMPLEX*16 array, dimension (min(M,N))
*          The scalar factors of the elementary reflectors (see Further
*          Details).
*
*  WORK    (workspace) COMPLEX*16 array, dimension (M)
*
*  INFO    (output) INTEGER
*          = 0: successful exit
*          < 0: if INFO = -i, the i-th argument had an illegal value
*
*  Further Details
*  ===============
*
*  The matrix Q is represented as a product of elementary reflectors
*
*     Q = H(1)**H H(2)**H . . . H(k)**H, where k = min(m,n).
*
*  Each H(i) has the form
*
*     H(i) = I - tau * v * v**H
*
*  where tau is a complex scalar, and v is a complex vector with
*  v(n-k+i+1:n) = 0 and v(n-k+i) = 1; conjg(v(1:n-k+i-1)) is stored on
*  exit in A(m-k+i,1:n-k+i-1), and tau in TAU(i).
*
*  =====================================================================
*
*     .. Parameters ..
      COMPLEX*16         ONE
      PARAMETER          ( ONE = ( 1.0D+00.0D+0 ) )
*     ..
*     .. Local Scalars ..
      INTEGER            I, K
      COMPLEX*16         ALPHA
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA, ZLACGV, ZLARF, ZLARFG
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAXMIN
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments
*
      INFO = 0
      IF( M.LT.0 ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( LDA.LT.MAX1, M ) ) THEN
         INFO = -4
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'ZGERQ2'-INFO )
         RETURN
      END IF
*
      K = MIN( M, N )
*
      DO 10 I = K, 1-1
*
*        Generate elementary reflector H(i) to annihilate
*        A(m-k+i,1:n-k+i-1)
*
         CALL ZLACGV( N-K+I, A( M-K+I, 1 ), LDA )
         ALPHA = A( M-K+I, N-K+I )
         CALL ZLARFG( N-K+I, ALPHA, A( M-K+I, 1 ), LDA, TAU( I ) )
*
*        Apply H(i) to A(1:m-k+i-1,1:n-k+i) from the right
*
         A( M-K+I, N-K+I ) = ONE
         CALL ZLARF( 'Right', M-K+I-1, N-K+I, A( M-K+I, 1 ), LDA,
     $               TAU( I ), A, LDA, WORK )
         A( M-K+I, N-K+I ) = ALPHA
         CALL ZLACGV( N-K+I-1, A( M-K+I, 1 ), LDA )
   10 CONTINUE
      RETURN
*
*     End of ZGERQ2
*
      END