1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
     225
     226
     227
     228
     229
     230
     231
     232
     233
     234
     235
     236
     237
     238
     239
     240
     241
     242
     243
     244
     245
     246
     247
     248
     249
     250
     251
     252
     253
     254
     255
     256
     257
     258
     259
     260
     261
     262
     263
     264
     265
     266
     267
     268
     269
     270
     271
     272
      SUBROUTINE ZGTTS2( ITRANS, N, NRHS, DL, D, DU, DU2, IPIV, B, LDB )
*
*  -- LAPACK auxiliary routine (version 3.2) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2006
*
*     .. Scalar Arguments ..
      INTEGER            ITRANS, LDB, N, NRHS
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * )
      COMPLEX*16         B( LDB, * ), D( * ), DL( * ), DU( * ), DU2( * )
*     ..
*
*  Purpose
*  =======
*
*  ZGTTS2 solves one of the systems of equations
*     A * X = B,  A**T * X = B,  or  A**H * X = B,
*  with a tridiagonal matrix A using the LU factorization computed
*  by ZGTTRF.
*
*  Arguments
*  =========
*
*  ITRANS  (input) INTEGER
*          Specifies the form of the system of equations.
*          = 0:  A * X = B     (No transpose)
*          = 1:  A**T * X = B  (Transpose)
*          = 2:  A**H * X = B  (Conjugate transpose)
*
*  N       (input) INTEGER
*          The order of the matrix A.
*
*  NRHS    (input) INTEGER
*          The number of right hand sides, i.e., the number of columns
*          of the matrix B.  NRHS >= 0.
*
*  DL      (input) COMPLEX*16 array, dimension (N-1)
*          The (n-1) multipliers that define the matrix L from the
*          LU factorization of A.
*
*  D       (input) COMPLEX*16 array, dimension (N)
*          The n diagonal elements of the upper triangular matrix U from
*          the LU factorization of A.
*
*  DU      (input) COMPLEX*16 array, dimension (N-1)
*          The (n-1) elements of the first super-diagonal of U.
*
*  DU2     (input) COMPLEX*16 array, dimension (N-2)
*          The (n-2) elements of the second super-diagonal of U.
*
*  IPIV    (input) INTEGER array, dimension (N)
*          The pivot indices; for 1 <= i <= n, row i of the matrix was
*          interchanged with row IPIV(i).  IPIV(i) will always be either
*          i or i+1; IPIV(i) = i indicates a row interchange was not
*          required.
*
*  B       (input/output) COMPLEX*16 array, dimension (LDB,NRHS)
*          On entry, the matrix of right hand side vectors B.
*          On exit, B is overwritten by the solution vectors X.
*
*  LDB     (input) INTEGER
*          The leading dimension of the array B.  LDB >= max(1,N).
*
*  =====================================================================
*
*     .. Local Scalars ..
      INTEGER            I, J
      COMPLEX*16         TEMP
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DCONJG
*     ..
*     .. Executable Statements ..
*
*     Quick return if possible
*
      IF( N.EQ.0 .OR. NRHS.EQ.0 )
     $   RETURN
*
      IF( ITRANS.EQ.0 ) THEN
*
*        Solve A*X = B using the LU factorization of A,
*        overwriting each right hand side vector with its solution.
*
         IF( NRHS.LE.1 ) THEN
            J = 1
   10       CONTINUE
*
*           Solve L*x = b.
*
            DO 20 I = 1, N - 1
               IF( IPIV( I ).EQ.I ) THEN
                  B( I+1, J ) = B( I+1, J ) - DL( I )*B( I, J )
               ELSE
                  TEMP = B( I, J )
                  B( I, J ) = B( I+1, J )
                  B( I+1, J ) = TEMP - DL( I )*B( I, J )
               END IF
   20       CONTINUE
*
*           Solve U*x = b.
*
            B( N, J ) = B( N, J ) / D( N )
            IF( N.GT.1 )
     $         B( N-1, J ) = ( B( N-1, J )-DU( N-1 )*B( N, J ) ) /
     $                       D( N-1 )
            DO 30 I = N - 21-1
               B( I, J ) = ( B( I, J )-DU( I )*B( I+1, J )-DU2( I )*
     $                     B( I+2, J ) ) / D( I )
   30       CONTINUE
            IF( J.LT.NRHS ) THEN
               J = J + 1
               GO TO 10
            END IF
         ELSE
            DO 60 J = 1, NRHS
*
*           Solve L*x = b.
*
               DO 40 I = 1, N - 1
                  IF( IPIV( I ).EQ.I ) THEN
                     B( I+1, J ) = B( I+1, J ) - DL( I )*B( I, J )
                  ELSE
                     TEMP = B( I, J )
                     B( I, J ) = B( I+1, J )
                     B( I+1, J ) = TEMP - DL( I )*B( I, J )
                  END IF
   40          CONTINUE
*
*           Solve U*x = b.
*
               B( N, J ) = B( N, J ) / D( N )
               IF( N.GT.1 )
     $            B( N-1, J ) = ( B( N-1, J )-DU( N-1 )*B( N, J ) ) /
     $                          D( N-1 )
               DO 50 I = N - 21-1
                  B( I, J ) = ( B( I, J )-DU( I )*B( I+1, J )-DU2( I )*
     $                        B( I+2, J ) ) / D( I )
   50          CONTINUE
   60       CONTINUE
         END IF
      ELSE IF( ITRANS.EQ.1 ) THEN
*
*        Solve A**T * X = B.
*
         IF( NRHS.LE.1 ) THEN
            J = 1
   70       CONTINUE
*
*           Solve U**T * x = b.
*
            B( 1, J ) = B( 1, J ) / D( 1 )
            IF( N.GT.1 )
     $         B( 2, J ) = ( B( 2, J )-DU( 1 )*B( 1, J ) ) / D( 2 )
            DO 80 I = 3, N
               B( I, J ) = ( B( I, J )-DU( I-1 )*B( I-1, J )-DU2( I-2 )*
     $                     B( I-2, J ) ) / D( I )
   80       CONTINUE
*
*           Solve L**T * x = b.
*
            DO 90 I = N - 11-1
               IF( IPIV( I ).EQ.I ) THEN
                  B( I, J ) = B( I, J ) - DL( I )*B( I+1, J )
               ELSE
                  TEMP = B( I+1, J )
                  B( I+1, J ) = B( I, J ) - DL( I )*TEMP
                  B( I, J ) = TEMP
               END IF
   90       CONTINUE
            IF( J.LT.NRHS ) THEN
               J = J + 1
               GO TO 70
            END IF
         ELSE
            DO 120 J = 1, NRHS
*
*           Solve U**T * x = b.
*
               B( 1, J ) = B( 1, J ) / D( 1 )
               IF( N.GT.1 )
     $            B( 2, J ) = ( B( 2, J )-DU( 1 )*B( 1, J ) ) / D( 2 )
               DO 100 I = 3, N
                  B( I, J ) = ( B( I, J )-DU( I-1 )*B( I-1, J )-
     $                        DU2( I-2 )*B( I-2, J ) ) / D( I )
  100          CONTINUE
*
*           Solve L**T * x = b.
*
               DO 110 I = N - 11-1
                  IF( IPIV( I ).EQ.I ) THEN
                     B( I, J ) = B( I, J ) - DL( I )*B( I+1, J )
                  ELSE
                     TEMP = B( I+1, J )
                     B( I+1, J ) = B( I, J ) - DL( I )*TEMP
                     B( I, J ) = TEMP
                  END IF
  110          CONTINUE
  120       CONTINUE
         END IF
      ELSE
*
*        Solve A**H * X = B.
*
         IF( NRHS.LE.1 ) THEN
            J = 1
  130       CONTINUE
*
*           Solve U**H * x = b.
*
            B( 1, J ) = B( 1, J ) / DCONJG( D( 1 ) )
            IF( N.GT.1 )
     $         B( 2, J ) = ( B( 2, J )-DCONJG( DU( 1 ) )*B( 1, J ) ) /
     $                     DCONJG( D( 2 ) )
            DO 140 I = 3, N
               B( I, J ) = ( B( I, J )-DCONJG( DU( I-1 ) )*B( I-1, J )-
     $                     DCONJG( DU2( I-2 ) )*B( I-2, J ) ) /
     $                     DCONJG( D( I ) )
  140       CONTINUE
*
*           Solve L**H * x = b.
*
            DO 150 I = N - 11-1
               IF( IPIV( I ).EQ.I ) THEN
                  B( I, J ) = B( I, J ) - DCONJG( DL( I ) )*B( I+1, J )
               ELSE
                  TEMP = B( I+1, J )
                  B( I+1, J ) = B( I, J ) - DCONJG( DL( I ) )*TEMP
                  B( I, J ) = TEMP
               END IF
  150       CONTINUE
            IF( J.LT.NRHS ) THEN
               J = J + 1
               GO TO 130
            END IF
         ELSE
            DO 180 J = 1, NRHS
*
*           Solve U**H * x = b.
*
               B( 1, J ) = B( 1, J ) / DCONJG( D( 1 ) )
               IF( N.GT.1 )
     $            B( 2, J ) = ( B( 2, J )-DCONJG( DU( 1 ) )*B( 1, J ) )
     $                         / DCONJG( D( 2 ) )
               DO 160 I = 3, N
                  B( I, J ) = ( B( I, J )-DCONJG( DU( I-1 ) )*
     $                        B( I-1, J )-DCONJG( DU2( I-2 ) )*
     $                        B( I-2, J ) ) / DCONJG( D( I ) )
  160          CONTINUE
*
*           Solve L**H * x = b.
*
               DO 170 I = N - 11-1
                  IF( IPIV( I ).EQ.I ) THEN
                     B( I, J ) = B( I, J ) - DCONJG( DL( I ) )*
     $                           B( I+1, J )
                  ELSE
                     TEMP = B( I+1, J )
                     B( I+1, J ) = B( I, J ) - DCONJG( DL( I ) )*TEMP
                     B( I, J ) = TEMP
                  END IF
  170          CONTINUE
  180       CONTINUE
         END IF
      END IF
*
*     End of ZGTTS2
*
      END