1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
     225
     226
     227
     228
     229
     230
     231
     232
     233
     234
     235
     236
     237
     238
     239
     240
     241
     242
     243
     244
     245
     246
     247
     248
     249
     250
     251
     252
     253
     254
     255
     256
     257
     258
     259
     260
     261
     262
     263
     264
     265
     266
     267
     268
     269
     270
     271
     272
     273
     274
     275
     276
     277
     278
     279
     280
     281
     282
     283
     284
     285
     286
     287
     288
     289
     290
     291
     292
     293
     294
     295
     296
     297
     298
     299
      SUBROUTINE ZHBGVD( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W,
     $                   Z, LDZ, WORK, LWORK, RWORK, LRWORK, IWORK,
     $                   LIWORK, INFO )
*
*  -- LAPACK driver routine (version 3.3.1) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*  -- April 2011                                                      --
* @precisions normal z -> c
*
*     .. Scalar Arguments ..
      CHARACTER          JOBZ, UPLO
      INTEGER            INFO, KA, KB, LDAB, LDBB, LDZ, LIWORK, LRWORK,
     $                   LWORK, N
*     ..
*     .. Array Arguments ..
      INTEGER            IWORK( * )
      DOUBLE PRECISION   RWORK( * ), W( * )
      COMPLEX*16         AB( LDAB, * ), BB( LDBB, * ), WORK( * ),
     $                   Z( LDZ, * )
*     ..
*
*  Purpose
*  =======
*
*  ZHBGVD computes all the eigenvalues, and optionally, the eigenvectors
*  of a complex generalized Hermitian-definite banded eigenproblem, of
*  the form A*x=(lambda)*B*x. Here A and B are assumed to be Hermitian
*  and banded, and B is also positive definite.  If eigenvectors are
*  desired, it uses a divide and conquer algorithm.
*
*  The divide and conquer algorithm makes very mild assumptions about
*  floating point arithmetic. It will work on machines with a guard
*  digit in add/subtract, or on those binary machines without guard
*  digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
*  Cray-2. It could conceivably fail on hexadecimal or decimal machines
*  without guard digits, but we know of none.
*
*  Arguments
*  =========
*
*  JOBZ    (input) CHARACTER*1
*          = 'N':  Compute eigenvalues only;
*          = 'V':  Compute eigenvalues and eigenvectors.
*
*  UPLO    (input) CHARACTER*1
*          = 'U':  Upper triangles of A and B are stored;
*          = 'L':  Lower triangles of A and B are stored.
*
*  N       (input) INTEGER
*          The order of the matrices A and B.  N >= 0.
*
*  KA      (input) INTEGER
*          The number of superdiagonals of the matrix A if UPLO = 'U',
*          or the number of subdiagonals if UPLO = 'L'. KA >= 0.
*
*  KB      (input) INTEGER
*          The number of superdiagonals of the matrix B if UPLO = 'U',
*          or the number of subdiagonals if UPLO = 'L'. KB >= 0.
*
*  AB      (input/output) COMPLEX*16 array, dimension (LDAB, N)
*          On entry, the upper or lower triangle of the Hermitian band
*          matrix A, stored in the first ka+1 rows of the array.  The
*          j-th column of A is stored in the j-th column of the array AB
*          as follows:
*          if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
*          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+ka).
*
*          On exit, the contents of AB are destroyed.
*
*  LDAB    (input) INTEGER
*          The leading dimension of the array AB.  LDAB >= KA+1.
*
*  BB      (input/output) COMPLEX*16 array, dimension (LDBB, N)
*          On entry, the upper or lower triangle of the Hermitian band
*          matrix B, stored in the first kb+1 rows of the array.  The
*          j-th column of B is stored in the j-th column of the array BB
*          as follows:
*          if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
*          if UPLO = 'L', BB(1+i-j,j)    = B(i,j) for j<=i<=min(n,j+kb).
*
*          On exit, the factor S from the split Cholesky factorization
*          B = S**H*S, as returned by ZPBSTF.
*
*  LDBB    (input) INTEGER
*          The leading dimension of the array BB.  LDBB >= KB+1.
*
*  W       (output) DOUBLE PRECISION array, dimension (N)
*          If INFO = 0, the eigenvalues in ascending order.
*
*  Z       (output) COMPLEX*16 array, dimension (LDZ, N)
*          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
*          eigenvectors, with the i-th column of Z holding the
*          eigenvector associated with W(i). The eigenvectors are
*          normalized so that Z**H*B*Z = I.
*          If JOBZ = 'N', then Z is not referenced.
*
*  LDZ     (input) INTEGER
*          The leading dimension of the array Z.  LDZ >= 1, and if
*          JOBZ = 'V', LDZ >= N.
*
*  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
*          On exit, if INFO=0, WORK(1) returns the optimal LWORK.
*
*  LWORK   (input) INTEGER
*          The dimension of the array WORK.
*          If N <= 1,               LWORK >= 1.
*          If JOBZ = 'N' and N > 1, LWORK >= N.
*          If JOBZ = 'V' and N > 1, LWORK >= 2*N**2.
*
*          If LWORK = -1, then a workspace query is assumed; the routine
*          only calculates the optimal sizes of the WORK, RWORK and
*          IWORK arrays, returns these values as the first entries of
*          the WORK, RWORK and IWORK arrays, and no error message
*          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
*
*  RWORK   (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LRWORK))
*          On exit, if INFO=0, RWORK(1) returns the optimal LRWORK.
*
*  LRWORK  (input) INTEGER
*          The dimension of array RWORK.
*          If N <= 1,               LRWORK >= 1.
*          If JOBZ = 'N' and N > 1, LRWORK >= N.
*          If JOBZ = 'V' and N > 1, LRWORK >= 1 + 5*N + 2*N**2.
*
*          If LRWORK = -1, then a workspace query is assumed; the
*          routine only calculates the optimal sizes of the WORK, RWORK
*          and IWORK arrays, returns these values as the first entries
*          of the WORK, RWORK and IWORK arrays, and no error message
*          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
*
*  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
*          On exit, if INFO=0, IWORK(1) returns the optimal LIWORK.
*
*  LIWORK  (input) INTEGER
*          The dimension of array IWORK.
*          If JOBZ = 'N' or N <= 1, LIWORK >= 1.
*          If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N.
*
*          If LIWORK = -1, then a workspace query is assumed; the
*          routine only calculates the optimal sizes of the WORK, RWORK
*          and IWORK arrays, returns these values as the first entries
*          of the WORK, RWORK and IWORK arrays, and no error message
*          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*          > 0:  if INFO = i, and i is:
*             <= N:  the algorithm failed to converge:
*                    i off-diagonal elements of an intermediate
*                    tridiagonal form did not converge to zero;
*             > N:   if INFO = N + i, for 1 <= i <= N, then ZPBSTF
*                    returned INFO = i: B is not positive definite.
*                    The factorization of B could not be completed and
*                    no eigenvalues or eigenvectors were computed.
*
*  Further Details
*  ===============
*
*  Based on contributions by
*     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
*
*  =====================================================================
*
*     .. Parameters ..
      COMPLEX*16         CONE, CZERO
      PARAMETER          ( CONE = ( 1.0D+00.0D+0 ),
     $                   CZERO = ( 0.0D+00.0D+0 ) )
*     ..
*     .. Local Scalars ..
      LOGICAL            LQUERY, UPPER, WANTZ
      CHARACTER          VECT
      INTEGER            IINFO, INDE, INDWK2, INDWRK, LIWMIN, LLRWK,
     $                   LLWK2, LRWMIN, LWMIN
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           DSTERF, XERBLA, ZGEMM, ZHBGST, ZHBTRD, ZLACPY,
     $                   ZPBSTF, ZSTEDC
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      WANTZ = LSAME( JOBZ, 'V' )
      UPPER = LSAME( UPLO, 'U' )
      LQUERY = ( LWORK.EQ.-1 .OR. LRWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
*
      INFO = 0
      IF( N.LE.1 ) THEN
         LWMIN = 1+N
         LRWMIN = 1+N
         LIWMIN = 1
      ELSE IF( WANTZ ) THEN
         LWMIN = 2*N**2
         LRWMIN = 1 + 5*+ 2*N**2
         LIWMIN = 3 + 5*N
      ELSE
         LWMIN = N
         LRWMIN = N
         LIWMIN = 1
      END IF
      IF.NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
         INFO = -1
      ELSE IF.NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( KA.LT.0 ) THEN
         INFO = -4
      ELSE IF( KB.LT.0 .OR. KB.GT.KA ) THEN
         INFO = -5
      ELSE IF( LDAB.LT.KA+1 ) THEN
         INFO = -7
      ELSE IF( LDBB.LT.KB+1 ) THEN
         INFO = -9
      ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
         INFO = -12
      END IF
*
      IF( INFO.EQ.0 ) THEN
         WORK( 1 ) = LWMIN
         RWORK( 1 ) = LRWMIN
         IWORK( 1 ) = LIWMIN
*
         IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
            INFO = -14
         ELSE IF( LRWORK.LT.LRWMIN .AND. .NOT.LQUERY ) THEN
            INFO = -16
         ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
            INFO = -18
         END IF
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'ZHBGVD'-INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
*     Form a split Cholesky factorization of B.
*
      CALL ZPBSTF( UPLO, N, KB, BB, LDBB, INFO )
      IF( INFO.NE.0 ) THEN
         INFO = N + INFO
         RETURN
      END IF
*
*     Transform problem to standard eigenvalue problem.
*
      INDE = 1
      INDWRK = INDE + N
      INDWK2 = 1 + N*N
      LLWK2 = LWORK - INDWK2 + 2
      LLRWK = LRWORK - INDWRK + 2
      CALL ZHBGST( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, Z, LDZ,
     $             WORK, RWORK( INDWRK ), IINFO )
*
*     Reduce Hermitian band matrix to tridiagonal form.
*
      IF( WANTZ ) THEN
         VECT = 'U'
      ELSE
         VECT = 'N'
      END IF
      CALL ZHBTRD( VECT, UPLO, N, KA, AB, LDAB, W, RWORK( INDE ), Z,
     $             LDZ, WORK, IINFO )
*
*     For eigenvalues only, call DSTERF.  For eigenvectors, call ZSTEDC.
*
      IF.NOT.WANTZ ) THEN
         CALL DSTERF( N, W, RWORK( INDE ), INFO )
      ELSE
         CALL ZSTEDC( 'I', N, W, RWORK( INDE ), WORK, N, WORK( INDWK2 ),
     $                LLWK2, RWORK( INDWRK ), LLRWK, IWORK, LIWORK,
     $                INFO )
         CALL ZGEMM( 'N''N', N, N, N, CONE, Z, LDZ, WORK, N, CZERO,
     $               WORK( INDWK2 ), N )
         CALL ZLACPY( 'A', N, N, WORK( INDWK2 ), N, Z, LDZ )
      END IF
*
      WORK( 1 ) = LWMIN
      RWORK( 1 ) = LRWMIN
      IWORK( 1 ) = LIWMIN
      RETURN
*
*     End of ZHBGVD
*
      END