1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
     225
     226
     227
     228
     229
     230
     231
     232
     233
     234
     235
     236
     237
     238
     239
     240
     241
     242
     243
     244
     245
     246
     247
     248
     249
     250
     251
     252
     253
     254
     255
     256
     257
     258
     259
     260
     261
     262
     263
     264
     265
     266
     267
     268
     269
     270
     271
     272
     273
     274
     275
     276
     277
     278
     279
     280
     281
     282
     283
     284
     285
     286
     287
     288
     289
     290
     291
     292
     293
     294
     295
     296
     297
     298
     299
     300
     301
     302
     303
     304
     305
     306
     307
     308
     309
     310
     311
     312
     313
     314
     315
     316
     317
     318
     319
     320
     321
     322
     323
     324
     325
     326
     327
     328
     329
     330
     331
     332
     333
     334
     335
     336
     337
     338
     339
     340
     341
     342
     343
     344
     345
     346
     347
     348
     349
     350
     351
     352
     353
     354
     355
     356
     357
     358
     359
     360
     361
     362
     363
     364
     365
     366
     367
     368
     369
     370
     371
     372
     373
     374
     375
     376
     377
     378
     379
     380
     381
     382
     383
     384
     385
     386
     387
     388
     389
     390
     391
     392
     393
     394
     395
     396
     397
     398
     399
     400
     401
     402
     403
     404
     405
     406
     407
     408
     409
     410
     411
     412
     413
     414
     415
     416
     417
     418
     419
     420
     421
     422
     423
     424
     425
     426
     427
     428
     429
     430
     431
     432
     433
     434
     435
     436
     437
     438
     439
     440
     441
     442
     443
     444
     445
     446
     447
     448
     449
     450
     451
     452
     453
     454
     455
     456
     457
     458
     459
     460
     461
     462
     463
     464
     465
     466
     467
     468
     469
     470
     471
     472
     473
     474
     475
     476
     477
     478
     479
     480
     481
     482
     483
     484
     485
     486
     487
     488
     489
     490
     491
     492
     493
     494
     495
     496
     497
     498
     499
     500
     501
     502
     503
     504
     505
     506
     507
     508
     509
     510
     511
     512
     513
     514
     515
     516
     517
     518
     519
     520
     521
     522
     523
     524
     525
     526
     527
     528
     529
     530
     531
     532
     533
     534
     535
     536
     537
     538
     539
     540
     541
     542
     543
     544
     545
     546
     547
     548
     549
     550
     551
     552
     553
     554
      SUBROUTINE ZHETF2( UPLO, N, A, LDA, IPIV, INFO )
*
*  -- LAPACK routine (version 3.3.1) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*  -- April 2011                                                      --
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            INFO, LDA, N
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * )
      COMPLEX*16         A( LDA, * )
*     ..
*
*  Purpose
*  =======
*
*  ZHETF2 computes the factorization of a complex Hermitian matrix A
*  using the Bunch-Kaufman diagonal pivoting method:
*
*     A = U*D*U**H  or  A = L*D*L**H
*
*  where U (or L) is a product of permutation and unit upper (lower)
*  triangular matrices, U**H is the conjugate transpose of U, and D is
*  Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
*
*  This is the unblocked version of the algorithm, calling Level 2 BLAS.
*
*  Arguments
*  =========
*
*  UPLO    (input) CHARACTER*1
*          Specifies whether the upper or lower triangular part of the
*          Hermitian matrix A is stored:
*          = 'U':  Upper triangular
*          = 'L':  Lower triangular
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.
*
*  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
*          On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
*          n-by-n upper triangular part of A contains the upper
*          triangular part of the matrix A, and the strictly lower
*          triangular part of A is not referenced.  If UPLO = 'L', the
*          leading n-by-n lower triangular part of A contains the lower
*          triangular part of the matrix A, and the strictly upper
*          triangular part of A is not referenced.
*
*          On exit, the block diagonal matrix D and the multipliers used
*          to obtain the factor U or L (see below for further details).
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,N).
*
*  IPIV    (output) INTEGER array, dimension (N)
*          Details of the interchanges and the block structure of D.
*          If IPIV(k) > 0, then rows and columns k and IPIV(k) were
*          interchanged and D(k,k) is a 1-by-1 diagonal block.
*          If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
*          columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
*          is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) =
*          IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
*          interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
*
*  INFO    (output) INTEGER
*          = 0: successful exit
*          < 0: if INFO = -k, the k-th argument had an illegal value
*          > 0: if INFO = k, D(k,k) is exactly zero.  The factorization
*               has been completed, but the block diagonal matrix D is
*               exactly singular, and division by zero will occur if it
*               is used to solve a system of equations.
*
*  Further Details
*  ===============
*
*  09-29-06 - patch from
*    Bobby Cheng, MathWorks
*
*    Replace l.210 and l.393
*         IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
*    by
*         IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. DISNAN(ABSAKK) ) THEN
*
*  01-01-96 - Based on modifications by
*    J. Lewis, Boeing Computer Services Company
*    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
*
*  If UPLO = 'U', then A = U*D*U**H, where
*     U = P(n)*U(n)* ... *P(k)U(k)* ...,
*  i.e., U is a product of terms P(k)*U(k), where k decreases from n to
*  1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
*  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
*  defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
*  that if the diagonal block D(k) is of order s (s = 1 or 2), then
*
*             (   I    v    0   )   k-s
*     U(k) =  (   0    I    0   )   s
*             (   0    0    I   )   n-k
*                k-s   s   n-k
*
*  If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
*  If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
*  and A(k,k), and v overwrites A(1:k-2,k-1:k).
*
*  If UPLO = 'L', then A = L*D*L**H, where
*     L = P(1)*L(1)* ... *P(k)*L(k)* ...,
*  i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
*  n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
*  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
*  defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
*  that if the diagonal block D(k) is of order s (s = 1 or 2), then
*
*             (   I    0     0   )  k-1
*     L(k) =  (   0    I     0   )  s
*             (   0    v     I   )  n-k-s+1
*                k-1   s  n-k-s+1
*
*  If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
*  If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
*  and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
      DOUBLE PRECISION   EIGHT, SEVTEN
      PARAMETER          ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            UPPER
      INTEGER            I, IMAX, J, JMAX, K, KK, KP, KSTEP
      DOUBLE PRECISION   ABSAKK, ALPHA, COLMAX, D, D11, D22, R1, ROWMAX,
     $                   TT
      COMPLEX*16         D12, D21, T, WK, WKM1, WKP1, ZDUM
*     ..
*     .. External Functions ..
      LOGICAL            LSAME, DISNAN
      INTEGER            IZAMAX
      DOUBLE PRECISION   DLAPY2
      EXTERNAL           LSAME, IZAMAX, DLAPY2, DISNAN
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA, ZDSCAL, ZHER, ZSWAP
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABSDBLEDCMPLXDCONJGDIMAGMAXSQRT
*     ..
*     .. Statement Functions ..
      DOUBLE PRECISION   CABS1
*     ..
*     .. Statement Function definitions ..
      CABS1( ZDUM ) = ABSDBLE( ZDUM ) ) + ABSDIMAG( ZDUM ) )
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      UPPER = LSAME( UPLO, 'U' )
      IF.NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( LDA.LT.MAX1, N ) ) THEN
         INFO = -4
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'ZHETF2'-INFO )
         RETURN
      END IF
*
*     Initialize ALPHA for use in choosing pivot block size.
*
      ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
*
      IF( UPPER ) THEN
*
*        Factorize A as U*D*U**H using the upper triangle of A
*
*        K is the main loop index, decreasing from N to 1 in steps of
*        1 or 2
*
         K = N
   10    CONTINUE
*
*        If K < 1, exit from loop
*
         IF( K.LT.1 )
     $      GO TO 90
         KSTEP = 1
*
*        Determine rows and columns to be interchanged and whether
*        a 1-by-1 or 2-by-2 pivot block will be used
*
         ABSAKK = ABSDBLE( A( K, K ) ) )
*
*        IMAX is the row-index of the largest off-diagonal element in
*        column K, and COLMAX is its absolute value
*
         IF( K.GT.1 ) THEN
            IMAX = IZAMAX( K-1, A( 1, K ), 1 )
            COLMAX = CABS1( A( IMAX, K ) )
         ELSE
            COLMAX = ZERO
         END IF
*
         IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. DISNAN(ABSAKK) ) THEN
*
*           Column K is zero or contains a NaN: set INFO and continue
*
            IF( INFO.EQ.0 )
     $         INFO = K
            KP = K
            A( K, K ) = DBLE( A( K, K ) )
         ELSE
            IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
*
*              no interchange, use 1-by-1 pivot block
*
               KP = K
            ELSE
*
*              JMAX is the column-index of the largest off-diagonal
*              element in row IMAX, and ROWMAX is its absolute value
*
               JMAX = IMAX + IZAMAX( K-IMAX, A( IMAX, IMAX+1 ), LDA )
               ROWMAX = CABS1( A( IMAX, JMAX ) )
               IF( IMAX.GT.1 ) THEN
                  JMAX = IZAMAX( IMAX-1, A( 1, IMAX ), 1 )
                  ROWMAX = MAX( ROWMAX, CABS1( A( JMAX, IMAX ) ) )
               END IF
*
               IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
*
*                 no interchange, use 1-by-1 pivot block
*
                  KP = K
               ELSE IFABSDBLE( A( IMAX, IMAX ) ) ).GE.ALPHA*ROWMAX )
     $                   THEN
*
*                 interchange rows and columns K and IMAX, use 1-by-1
*                 pivot block
*
                  KP = IMAX
               ELSE
*
*                 interchange rows and columns K-1 and IMAX, use 2-by-2
*                 pivot block
*
                  KP = IMAX
                  KSTEP = 2
               END IF
            END IF
*
            KK = K - KSTEP + 1
            IF( KP.NE.KK ) THEN
*
*              Interchange rows and columns KK and KP in the leading
*              submatrix A(1:k,1:k)
*
               CALL ZSWAP( KP-1, A( 1, KK ), 1, A( 1, KP ), 1 )
               DO 20 J = KP + 1, KK - 1
                  T = DCONJG( A( J, KK ) )
                  A( J, KK ) = DCONJG( A( KP, J ) )
                  A( KP, J ) = T
   20          CONTINUE
               A( KP, KK ) = DCONJG( A( KP, KK ) )
               R1 = DBLE( A( KK, KK ) )
               A( KK, KK ) = DBLE( A( KP, KP ) )
               A( KP, KP ) = R1
               IF( KSTEP.EQ.2 ) THEN
                  A( K, K ) = DBLE( A( K, K ) )
                  T = A( K-1, K )
                  A( K-1, K ) = A( KP, K )
                  A( KP, K ) = T
               END IF
            ELSE
               A( K, K ) = DBLE( A( K, K ) )
               IF( KSTEP.EQ.2 )
     $            A( K-1, K-1 ) = DBLE( A( K-1, K-1 ) )
            END IF
*
*           Update the leading submatrix
*
            IF( KSTEP.EQ.1 ) THEN
*
*              1-by-1 pivot block D(k): column k now holds
*
*              W(k) = U(k)*D(k)
*
*              where U(k) is the k-th column of U
*
*              Perform a rank-1 update of A(1:k-1,1:k-1) as
*
*              A := A - U(k)*D(k)*U(k)**H = A - W(k)*1/D(k)*W(k)**H
*
               R1 = ONE / DBLE( A( K, K ) )
               CALL ZHER( UPLO, K-1-R1, A( 1, K ), 1, A, LDA )
*
*              Store U(k) in column k
*
               CALL ZDSCAL( K-1, R1, A( 1, K ), 1 )
            ELSE
*
*              2-by-2 pivot block D(k): columns k and k-1 now hold
*
*              ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
*
*              where U(k) and U(k-1) are the k-th and (k-1)-th columns
*              of U
*
*              Perform a rank-2 update of A(1:k-2,1:k-2) as
*
*              A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )**H
*                 = A - ( W(k-1) W(k) )*inv(D(k))*( W(k-1) W(k) )**H
*
               IF( K.GT.2 ) THEN
*
                  D = DLAPY2( DBLE( A( K-1, K ) ),
     $                DIMAG( A( K-1, K ) ) )
                  D22 = DBLE( A( K-1, K-1 ) ) / D
                  D11 = DBLE( A( K, K ) ) / D
                  TT = ONE / ( D11*D22-ONE )
                  D12 = A( K-1, K ) / D
                  D = TT / D
*
                  DO 40 J = K - 21-1
                     WKM1 = D*( D11*A( J, K-1 )-DCONJG( D12 )*
     $                      A( J, K ) )
                     WK = D*( D22*A( J, K )-D12*A( J, K-1 ) )
                     DO 30 I = J, 1-1
                        A( I, J ) = A( I, J ) - A( I, K )*DCONJG( WK ) -
     $                              A( I, K-1 )*DCONJG( WKM1 )
   30                CONTINUE
                     A( J, K ) = WK
                     A( J, K-1 ) = WKM1
                     A( J, J ) = DCMPLXDBLE( A( J, J ) ), 0.0D+0 )
   40             CONTINUE
*
               END IF
*
            END IF
         END IF
*
*        Store details of the interchanges in IPIV
*
         IF( KSTEP.EQ.1 ) THEN
            IPIV( K ) = KP
         ELSE
            IPIV( K ) = -KP
            IPIV( K-1 ) = -KP
         END IF
*
*        Decrease K and return to the start of the main loop
*
         K = K - KSTEP
         GO TO 10
*
      ELSE
*
*        Factorize A as L*D*L**H using the lower triangle of A
*
*        K is the main loop index, increasing from 1 to N in steps of
*        1 or 2
*
         K = 1
   50    CONTINUE
*
*        If K > N, exit from loop
*
         IF( K.GT.N )
     $      GO TO 90
         KSTEP = 1
*
*        Determine rows and columns to be interchanged and whether
*        a 1-by-1 or 2-by-2 pivot block will be used
*
         ABSAKK = ABSDBLE( A( K, K ) ) )
*
*        IMAX is the row-index of the largest off-diagonal element in
*        column K, and COLMAX is its absolute value
*
         IF( K.LT.N ) THEN
            IMAX = K + IZAMAX( N-K, A( K+1, K ), 1 )
            COLMAX = CABS1( A( IMAX, K ) )
         ELSE
            COLMAX = ZERO
         END IF
*
         IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. DISNAN(ABSAKK) ) THEN
*
*           Column K is zero or contains a NaN: set INFO and continue
*
            IF( INFO.EQ.0 )
     $         INFO = K
            KP = K
            A( K, K ) = DBLE( A( K, K ) )
         ELSE
            IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
*
*              no interchange, use 1-by-1 pivot block
*
               KP = K
            ELSE
*
*              JMAX is the column-index of the largest off-diagonal
*              element in row IMAX, and ROWMAX is its absolute value
*
               JMAX = K - 1 + IZAMAX( IMAX-K, A( IMAX, K ), LDA )
               ROWMAX = CABS1( A( IMAX, JMAX ) )
               IF( IMAX.LT.N ) THEN
                  JMAX = IMAX + IZAMAX( N-IMAX, A( IMAX+1, IMAX ), 1 )
                  ROWMAX = MAX( ROWMAX, CABS1( A( JMAX, IMAX ) ) )
               END IF
*
               IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
*
*                 no interchange, use 1-by-1 pivot block
*
                  KP = K
               ELSE IFABSDBLE( A( IMAX, IMAX ) ) ).GE.ALPHA*ROWMAX )
     $                   THEN
*
*                 interchange rows and columns K and IMAX, use 1-by-1
*                 pivot block
*
                  KP = IMAX
               ELSE
*
*                 interchange rows and columns K+1 and IMAX, use 2-by-2
*                 pivot block
*
                  KP = IMAX
                  KSTEP = 2
               END IF
            END IF
*
            KK = K + KSTEP - 1
            IF( KP.NE.KK ) THEN
*
*              Interchange rows and columns KK and KP in the trailing
*              submatrix A(k:n,k:n)
*
               IF( KP.LT.N )
     $            CALL ZSWAP( N-KP, A( KP+1, KK ), 1, A( KP+1, KP ), 1 )
               DO 60 J = KK + 1, KP - 1
                  T = DCONJG( A( J, KK ) )
                  A( J, KK ) = DCONJG( A( KP, J ) )
                  A( KP, J ) = T
   60          CONTINUE
               A( KP, KK ) = DCONJG( A( KP, KK ) )
               R1 = DBLE( A( KK, KK ) )
               A( KK, KK ) = DBLE( A( KP, KP ) )
               A( KP, KP ) = R1
               IF( KSTEP.EQ.2 ) THEN
                  A( K, K ) = DBLE( A( K, K ) )
                  T = A( K+1, K )
                  A( K+1, K ) = A( KP, K )
                  A( KP, K ) = T
               END IF
            ELSE
               A( K, K ) = DBLE( A( K, K ) )
               IF( KSTEP.EQ.2 )
     $            A( K+1, K+1 ) = DBLE( A( K+1, K+1 ) )
            END IF
*
*           Update the trailing submatrix
*
            IF( KSTEP.EQ.1 ) THEN
*
*              1-by-1 pivot block D(k): column k now holds
*
*              W(k) = L(k)*D(k)
*
*              where L(k) is the k-th column of L
*
               IF( K.LT.N ) THEN
*
*                 Perform a rank-1 update of A(k+1:n,k+1:n) as
*
*                 A := A - L(k)*D(k)*L(k)**H = A - W(k)*(1/D(k))*W(k)**H
*
                  R1 = ONE / DBLE( A( K, K ) )
                  CALL ZHER( UPLO, N-K, -R1, A( K+1, K ), 1,
     $                       A( K+1, K+1 ), LDA )
*
*                 Store L(k) in column K
*
                  CALL ZDSCAL( N-K, R1, A( K+1, K ), 1 )
               END IF
            ELSE
*
*              2-by-2 pivot block D(k)
*
               IF( K.LT.N-1 ) THEN
*
*                 Perform a rank-2 update of A(k+2:n,k+2:n) as
*
*                 A := A - ( L(k) L(k+1) )*D(k)*( L(k) L(k+1) )**H
*                    = A - ( W(k) W(k+1) )*inv(D(k))*( W(k) W(k+1) )**H
*
*                 where L(k) and L(k+1) are the k-th and (k+1)-th
*                 columns of L
*
                  D = DLAPY2( DBLE( A( K+1, K ) ),
     $                DIMAG( A( K+1, K ) ) )
                  D11 = DBLE( A( K+1, K+1 ) ) / D
                  D22 = DBLE( A( K, K ) ) / D
                  TT = ONE / ( D11*D22-ONE )
                  D21 = A( K+1, K ) / D
                  D = TT / D
*
                  DO 80 J = K + 2, N
                     WK = D*( D11*A( J, K )-D21*A( J, K+1 ) )
                     WKP1 = D*( D22*A( J, K+1 )-DCONJG( D21 )*
     $                      A( J, K ) )
                     DO 70 I = J, N
                        A( I, J ) = A( I, J ) - A( I, K )*DCONJG( WK ) -
     $                              A( I, K+1 )*DCONJG( WKP1 )
   70                CONTINUE
                     A( J, K ) = WK
                     A( J, K+1 ) = WKP1
                     A( J, J ) = DCMPLXDBLE( A( J, J ) ), 0.0D+0 )
   80             CONTINUE
               END IF
            END IF
         END IF
*
*        Store details of the interchanges in IPIV
*
         IF( KSTEP.EQ.1 ) THEN
            IPIV( K ) = KP
         ELSE
            IPIV( K ) = -KP
            IPIV( K+1 ) = -KP
         END IF
*
*        Increase K and return to the start of the main loop
*
         K = K + KSTEP
         GO TO 50
*
      END IF
*
   90 CONTINUE
      RETURN
*
*     End of ZHETF2
*
      END