1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
     225
     226
     227
     228
     229
     230
     231
     232
     233
     234
     235
     236
     237
     238
     239
     240
     241
     242
     243
     244
     245
     246
     247
     248
     249
     250
     251
     252
     253
     254
     255
     256
     257
     258
     259
     260
      DOUBLE PRECISION FUNCTION ZLA_HERPVGRW( UPLO, N, INFO, A, LDA, AF,
     $                                        LDAF, IPIV, WORK )
*
*     -- LAPACK routine (version 3.2.2)                                 --
*     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and --
*     -- Jason Riedy of Univ. of California Berkeley.                 --
*     -- June 2010                                                    --
*
*     -- LAPACK is a software package provided by Univ. of Tennessee, --
*     -- Univ. of California Berkeley and NAG Ltd.                    --
*
      IMPLICIT NONE
*     ..
*     .. Scalar Arguments ..
      CHARACTER*1        UPLO
      INTEGER            N, INFO, LDA, LDAF
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * )
      COMPLEX*16         A( LDA, * ), AF( LDAF, * )
      DOUBLE PRECISION   WORK( * )
*     ..
*
*  Purpose
*  =======

*  ZLA_HERPVGRW computes the reciprocal pivot growth factor
*  norm(A)/norm(U). The "max absolute element" norm is used. If this is
*  much less than 1, the stability of the LU factorization of the
*  (equilibrated) matrix A could be poor. This also means that the
*  solution X, estimated condition numbers, and error bounds could be
*  unreliable.
*
*  Arguments
*  =========
*
*     UPLO    (input) CHARACTER*1
*       = 'U':  Upper triangle of A is stored;
*       = 'L':  Lower triangle of A is stored.
*
*     N       (input) INTEGER
*     The number of linear equations, i.e., the order of the
*     matrix A.  N >= 0.
*
*     INFO    (input) INTEGER
*     The value of INFO returned from ZHETRF, .i.e., the pivot in
*     column INFO is exactly 0.
*
*     NCOLS   (input) INTEGER
*     The number of columns of the matrix A. NCOLS >= 0.
*
*     A       (input) COMPLEX*16 array, dimension (LDA,N)
*     On entry, the N-by-N matrix A.
*
*     LDA     (input) INTEGER
*     The leading dimension of the array A.  LDA >= max(1,N).
*
*     AF      (input) COMPLEX*16 array, dimension (LDAF,N)
*     The block diagonal matrix D and the multipliers used to
*     obtain the factor U or L as computed by ZHETRF.
*
*     LDAF    (input) INTEGER
*     The leading dimension of the array AF.  LDAF >= max(1,N).
*
*     IPIV    (input) INTEGER array, dimension (N)
*     Details of the interchanges and the block structure of D
*     as determined by ZHETRF.
*
*     WORK    (input) COMPLEX*16 array, dimension (2*N)
*
*  =====================================================================
*
*     .. Local Scalars ..
      INTEGER            NCOLS, I, J, K, KP
      DOUBLE PRECISION   AMAX, UMAX, RPVGRW, TMP
      LOGICAL            UPPER, LSAME
      COMPLEX*16         ZDUM
*     ..
*     .. External Functions ..
      EXTERNAL           LSAME, ZLASET
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, REAL, DIMAGMAXMIN
*     ..
*     .. Statement Functions ..
      DOUBLE PRECISION   CABS1
*     ..
*     .. Statement Function Definitions ..
      CABS1( ZDUM ) = ABSDBLE ( ZDUM ) ) + ABSDIMAG ( ZDUM ) )
*     ..
*     .. Executable Statements ..
*
      UPPER = LSAME( 'Upper', UPLO )
      IF ( INFO.EQ.0 ) THEN
         IF (UPPER) THEN
            NCOLS = 1
         ELSE
            NCOLS = N
         END IF
      ELSE
         NCOLS = INFO
      END IF

      RPVGRW = 1.0D+0
      DO I = 12*N
         WORK( I ) = 0.0D+0
      END DO
*
*     Find the max magnitude entry of each column of A.  Compute the max
*     for all N columns so we can apply the pivot permutation while
*     looping below.  Assume a full factorization is the common case.
*
      IF ( UPPER ) THEN
         DO J = 1, N
            DO I = 1, J
               WORK( N+I ) = MAX( CABS1( A( I,J ) ), WORK( N+I ) )
               WORK( N+J ) = MAX( CABS1( A( I,J ) ), WORK( N+J ) )
            END DO
         END DO
      ELSE
         DO J = 1, N
            DO I = J, N
               WORK( N+I ) = MAX( CABS1( A( I, J ) ), WORK( N+I ) )
               WORK( N+J ) = MAX( CABS1( A( I, J ) ), WORK( N+J ) )
            END DO
         END DO
      END IF
*
*     Now find the max magnitude entry of each column of U or L.  Also
*     permute the magnitudes of A above so they're in the same order as
*     the factor.
*
*     The iteration orders and permutations were copied from zsytrs.
*     Calls to SSWAP would be severe overkill.
*
      IF ( UPPER ) THEN
         K = N
         DO WHILE ( K .LT. NCOLS .AND. K.GT.0 )
            IF ( IPIV( K ).GT.0 ) THEN
!              1x1 pivot
               KP = IPIV( K )
               IF ( KP .NE. K ) THEN
                  TMP = WORK( N+K )
                  WORK( N+K ) = WORK( N+KP )
                  WORK( N+KP ) = TMP
               END IF
               DO I = 1, K
                  WORK( K ) = MAX( CABS1( AF( I, K ) ), WORK( K ) )
               END DO
               K = K - 1
            ELSE
!              2x2 pivot
               KP = -IPIV( K )
               TMP = WORK( N+K-1 )
               WORK( N+K-1 ) = WORK( N+KP )
               WORK( N+KP ) = TMP
               DO I = 1, K-1
                  WORK( K ) = MAX( CABS1( AF( I, K ) ), WORK( K ) )
                  WORK( K-1 ) =
     $                 MAX( CABS1( AF( I, K-1 ) ), WORK( K-1 ) )
               END DO
               WORK( K ) = MAX( CABS1( AF( K, K ) ), WORK( K ) )
               K = K - 2
            END IF
         END DO
         K = NCOLS
         DO WHILE ( K .LE. N )
            IF ( IPIV( K ).GT.0 ) THEN
               KP = IPIV( K )
               IF ( KP .NE. K ) THEN
                  TMP = WORK( N+K )
                  WORK( N+K ) = WORK( N+KP )
                  WORK( N+KP ) = TMP
               END IF
               K = K + 1
            ELSE
               KP = -IPIV( K )
               TMP = WORK( N+K )
               WORK( N+K ) = WORK( N+KP )
               WORK( N+KP ) = TMP
               K = K + 2
            END IF
         END DO
      ELSE
         K = 1
         DO WHILE ( K .LE. NCOLS )
            IF ( IPIV( K ).GT.0 ) THEN
!              1x1 pivot
               KP = IPIV( K )
               IF ( KP .NE. K ) THEN
                  TMP = WORK( N+K )
                  WORK( N+K ) = WORK( N+KP )
                  WORK( N+KP ) = TMP
               END IF
               DO I = K, N
                  WORK( K ) = MAX( CABS1( AF( I, K ) ), WORK( K ) )
               END DO
               K = K + 1
            ELSE
!              2x2 pivot
               KP = -IPIV( K )
               TMP = WORK( N+K+1 )
               WORK( N+K+1 ) = WORK( N+KP )
               WORK( N+KP ) = TMP
               DO I = K+1, N
                  WORK( K ) = MAX( CABS1( AF( I, K ) ), WORK( K ) )
                  WORK( K+1 ) =
     $                 MAX( CABS1( AF( I, K+1 ) ) , WORK( K+1 ) )
               END DO
               WORK(K) = MAX( CABS1( AF( K, K ) ), WORK( K ) )
               K = K + 2
            END IF
         END DO
         K = NCOLS
         DO WHILE ( K .GE. 1 )
            IF ( IPIV( K ).GT.0 ) THEN
               KP = IPIV( K )
               IF ( KP .NE. K ) THEN
                  TMP = WORK( N+K )
                  WORK( N+K ) = WORK( N+KP )
                  WORK( N+KP ) = TMP
               END IF
               K = K - 1
            ELSE
               KP = -IPIV( K )
               TMP = WORK( N+K )
               WORK( N+K ) = WORK( N+KP )
               WORK( N+KP ) = TMP
               K = K - 2
            ENDIF
         END DO
      END IF
*
*     Compute the *inverse* of the max element growth factor.  Dividing
*     by zero would imply the largest entry of the factor's column is
*     zero.  Than can happen when either the column of A is zero or
*     massive pivots made the factor underflow to zero.  Neither counts
*     as growth in itself, so simply ignore terms with zero
*     denominators.
*
      IF ( UPPER ) THEN
         DO I = NCOLS, N
            UMAX = WORK( I )
            AMAX = WORK( N+I )
            IF ( UMAX /= 0.0D+0 ) THEN
               RPVGRW = MIN( AMAX / UMAX, RPVGRW )
            END IF
         END DO
      ELSE
         DO I = 1, NCOLS
            UMAX = WORK( I )
            AMAX = WORK( N+I )
            IF ( UMAX /= 0.0D+0 ) THEN
               RPVGRW = MIN( AMAX / UMAX, RPVGRW )
            END IF
         END DO
      END IF

      ZLA_HERPVGRW = RPVGRW
      END