1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
     225
     226
     227
     228
     229
     230
     231
     232
     233
     234
     235
     236
     237
     238
     239
     240
     241
     242
     243
     244
     245
     246
     247
     248
     249
     250
     251
     252
     253
     254
     255
     256
     257
     258
     259
     260
     261
     262
     263
     264
     265
     266
     267
     268
     269
     270
     271
     272
     273
     274
     275
     276
     277
     278
     279
     280
     281
     282
     283
     284
     285
     286
     287
     288
     289
     290
     291
     292
     293
     294
     295
     296
     297
     298
     299
     300
     301
     302
     303
     304
     305
     306
     307
     308
     309
     310
     311
     312
     313
     314
     315
     316
     317
     318
     319
     320
     321
     322
     323
     324
     325
     326
     327
     328
     329
     330
     331
     332
     333
     334
     335
     336
     337
     338
     339
     340
     341
     342
     343
     344
     345
     346
     347
     348
     349
     350
     351
     352
     353
     354
     355
     356
     357
     358
     359
     360
     361
     362
     363
     364
     365
     366
     367
     368
     369
     370
     371
     372
     373
     374
     375
     376
     377
     378
     379
     380
     381
     382
     383
     384
     385
     386
     387
     388
     389
     390
     391
     392
     393
     394
     395
     396
     397
     398
     399
     400
     401
     402
     403
     404
     405
     406
     407
     408
     409
     410
     411
     412
     413
     414
     415
     416
     417
     418
     419
     420
     421
     422
     423
     424
     425
     426
     427
     428
     429
     430
     431
     432
     433
     434
     435
     436
     437
     438
     439
     440
     441
     442
     443
     444
     445
     446
     447
     448
     449
     450
     451
     452
     453
     454
     455
     456
     457
     458
     459
     460
     461
     462
     463
     464
     465
     466
     467
     468
     469
     470
     471
     472
     473
     474
     475
     476
     477
     478
     479
     480
     481
     482
     483
     484
     485
     486
     487
     488
     489
     490
     491
     492
     493
     494
     495
     496
     497
     498
     499
     500
     501
     502
     503
     504
     505
     506
     507
     508
     509
     510
     511
     512
     513
     514
     515
     516
     517
     518
     519
     520
     521
     522
     523
     524
     525
     526
     527
     528
     529
     530
     531
     532
     533
     534
     535
     536
     537
     538
     539
     540
     541
     542
     543
     544
     545
     546
     547
     548
     549
     550
     551
     552
     553
     554
     555
     556
     557
     558
     559
     560
     561
     562
     563
     564
     565
     566
     567
     568
     569
     570
     571
     572
     573
     574
     575
     576
     577
     578
     579
     580
     581
     582
     583
     584
     585
     586
     587
     588
     589
     590
     591
     592
     593
     594
     595
     596
     597
     598
     599
     600
     601
     602
      SUBROUTINE ZLALSD( UPLO, SMLSIZ, N, NRHS, D, E, B, LDB, RCOND,
     $                   RANK, WORK, RWORK, IWORK, INFO )
*
*  -- LAPACK routine (version 3.3.1) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*  -- April 2011                                                      --
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            INFO, LDB, N, NRHS, RANK, SMLSIZ
      DOUBLE PRECISION   RCOND
*     ..
*     .. Array Arguments ..
      INTEGER            IWORK( * )
      DOUBLE PRECISION   D( * ), E( * ), RWORK( * )
      COMPLEX*16         B( LDB, * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  ZLALSD uses the singular value decomposition of A to solve the least
*  squares problem of finding X to minimize the Euclidean norm of each
*  column of A*X-B, where A is N-by-N upper bidiagonal, and X and B
*  are N-by-NRHS. The solution X overwrites B.
*
*  The singular values of A smaller than RCOND times the largest
*  singular value are treated as zero in solving the least squares
*  problem; in this case a minimum norm solution is returned.
*  The actual singular values are returned in D in ascending order.
*
*  This code makes very mild assumptions about floating point
*  arithmetic. It will work on machines with a guard digit in
*  add/subtract, or on those binary machines without guard digits
*  which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2.
*  It could conceivably fail on hexadecimal or decimal machines
*  without guard digits, but we know of none.
*
*  Arguments
*  =========
*
*  UPLO   (input) CHARACTER*1
*         = 'U': D and E define an upper bidiagonal matrix.
*         = 'L': D and E define a  lower bidiagonal matrix.
*
*  SMLSIZ (input) INTEGER
*         The maximum size of the subproblems at the bottom of the
*         computation tree.
*
*  N      (input) INTEGER
*         The dimension of the  bidiagonal matrix.  N >= 0.
*
*  NRHS   (input) INTEGER
*         The number of columns of B. NRHS must be at least 1.
*
*  D      (input/output) DOUBLE PRECISION array, dimension (N)
*         On entry D contains the main diagonal of the bidiagonal
*         matrix. On exit, if INFO = 0, D contains its singular values.
*
*  E      (input/output) DOUBLE PRECISION array, dimension (N-1)
*         Contains the super-diagonal entries of the bidiagonal matrix.
*         On exit, E has been destroyed.
*
*  B      (input/output) COMPLEX*16 array, dimension (LDB,NRHS)
*         On input, B contains the right hand sides of the least
*         squares problem. On output, B contains the solution X.
*
*  LDB    (input) INTEGER
*         The leading dimension of B in the calling subprogram.
*         LDB must be at least max(1,N).
*
*  RCOND  (input) DOUBLE PRECISION
*         The singular values of A less than or equal to RCOND times
*         the largest singular value are treated as zero in solving
*         the least squares problem. If RCOND is negative,
*         machine precision is used instead.
*         For example, if diag(S)*X=B were the least squares problem,
*         where diag(S) is a diagonal matrix of singular values, the
*         solution would be X(i) = B(i) / S(i) if S(i) is greater than
*         RCOND*max(S), and X(i) = 0 if S(i) is less than or equal to
*         RCOND*max(S).
*
*  RANK   (output) INTEGER
*         The number of singular values of A greater than RCOND times
*         the largest singular value.
*
*  WORK   (workspace) COMPLEX*16 array, dimension at least
*         (N * NRHS).
*
*  RWORK  (workspace) DOUBLE PRECISION array, dimension at least
*         (9*N + 2*N*SMLSIZ + 8*N*NLVL + 3*SMLSIZ*NRHS +
*         MAX( (SMLSIZ+1)**2, N*(1+NRHS) + 2*NRHS ),
*         where
*         NLVL = MAX( 0, INT( LOG_2( MIN( M,N )/(SMLSIZ+1) ) ) + 1 )
*
*  IWORK  (workspace) INTEGER array, dimension at least
*         (3*N*NLVL + 11*N).
*
*  INFO   (output) INTEGER
*         = 0:  successful exit.
*         < 0:  if INFO = -i, the i-th argument had an illegal value.
*         > 0:  The algorithm failed to compute a singular value while
*               working on the submatrix lying in rows and columns
*               INFO/(N+1) through MOD(INFO,N+1).
*
*  Further Details
*  ===============
*
*  Based on contributions by
*     Ming Gu and Ren-Cang Li, Computer Science Division, University of
*       California at Berkeley, USA
*     Osni Marques, LBNL/NERSC, USA
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE, TWO
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0 )
      COMPLEX*16         CZERO
      PARAMETER          ( CZERO = ( 0.0D00.0D0 ) )
*     ..
*     .. Local Scalars ..
      INTEGER            BX, BXST, C, DIFL, DIFR, GIVCOL, GIVNUM,
     $                   GIVPTR, I, ICMPQ1, ICMPQ2, IRWB, IRWIB, IRWRB,
     $                   IRWU, IRWVT, IRWWRK, IWK, J, JCOL, JIMAG,
     $                   JREAL, JROW, K, NLVL, NM1, NRWORK, NSIZE, NSUB,
     $                   PERM, POLES, S, SIZEI, SMLSZP, SQRE, ST, ST1,
     $                   U, VT, Z
      DOUBLE PRECISION   CS, EPS, ORGNRM, RCND, R, SN, TOL
*     ..
*     .. External Functions ..
      INTEGER            IDAMAX
      DOUBLE PRECISION   DLAMCH, DLANST
      EXTERNAL           IDAMAX, DLAMCH, DLANST
*     ..
*     .. External Subroutines ..
      EXTERNAL           DGEMM, DLARTG, DLASCL, DLASDA, DLASDQ, DLASET,
     $                   DLASRT, XERBLA, ZCOPY, ZDROT, ZLACPY, ZLALSA,
     $                   ZLASCL, ZLASET
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABSDBLEDCMPLXDIMAGINTLOGSIGN
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
*
      IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( NRHS.LT.1 ) THEN
         INFO = -4
      ELSE IF( ( LDB.LT.1 ) .OR. ( LDB.LT.N ) ) THEN
         INFO = -8
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'ZLALSD'-INFO )
         RETURN
      END IF
*
      EPS = DLAMCH( 'Epsilon' )
*
*     Set up the tolerance.
*
      IF( ( RCOND.LE.ZERO ) .OR. ( RCOND.GE.ONE ) ) THEN
         RCND = EPS
      ELSE
         RCND = RCOND
      END IF
*
      RANK = 0
*
*     Quick return if possible.
*
      IF( N.EQ.0 ) THEN
         RETURN
      ELSE IF( N.EQ.1 ) THEN
         IF( D( 1 ).EQ.ZERO ) THEN
            CALL ZLASET( 'A'1, NRHS, CZERO, CZERO, B, LDB )
         ELSE
            RANK = 1
            CALL ZLASCL( 'G'00, D( 1 ), ONE, 1, NRHS, B, LDB, INFO )
            D( 1 ) = ABS( D( 1 ) )
         END IF
         RETURN
      END IF
*
*     Rotate the matrix if it is lower bidiagonal.
*
      IF( UPLO.EQ.'L' ) THEN
         DO 10 I = 1, N - 1
            CALL DLARTG( D( I ), E( I ), CS, SN, R )
            D( I ) = R
            E( I ) = SN*D( I+1 )
            D( I+1 ) = CS*D( I+1 )
            IF( NRHS.EQ.1 ) THEN
               CALL ZDROT( 1, B( I, 1 ), 1, B( I+11 ), 1, CS, SN )
            ELSE
               RWORK( I*2-1 ) = CS
               RWORK( I*2 ) = SN
            END IF
   10    CONTINUE
         IF( NRHS.GT.1 ) THEN
            DO 30 I = 1, NRHS
               DO 20 J = 1, N - 1
                  CS = RWORK( J*2-1 )
                  SN = RWORK( J*2 )
                  CALL ZDROT( 1, B( J, I ), 1, B( J+1, I ), 1, CS, SN )
   20          CONTINUE
   30       CONTINUE
         END IF
      END IF
*
*     Scale.
*
      NM1 = N - 1
      ORGNRM = DLANST( 'M', N, D, E )
      IF( ORGNRM.EQ.ZERO ) THEN
         CALL ZLASET( 'A', N, NRHS, CZERO, CZERO, B, LDB )
         RETURN
      END IF
*
      CALL DLASCL( 'G'00, ORGNRM, ONE, N, 1, D, N, INFO )
      CALL DLASCL( 'G'00, ORGNRM, ONE, NM1, 1, E, NM1, INFO )
*
*     If N is smaller than the minimum divide size SMLSIZ, then solve
*     the problem with another solver.
*
      IF( N.LE.SMLSIZ ) THEN
         IRWU = 1
         IRWVT = IRWU + N*N
         IRWWRK = IRWVT + N*N
         IRWRB = IRWWRK
         IRWIB = IRWRB + N*NRHS
         IRWB = IRWIB + N*NRHS
         CALL DLASET( 'A', N, N, ZERO, ONE, RWORK( IRWU ), N )
         CALL DLASET( 'A', N, N, ZERO, ONE, RWORK( IRWVT ), N )
         CALL DLASDQ( 'U'0, N, N, N, 0, D, E, RWORK( IRWVT ), N,
     $                RWORK( IRWU ), N, RWORK( IRWWRK ), 1,
     $                RWORK( IRWWRK ), INFO )
         IF( INFO.NE.0 ) THEN
            RETURN
         END IF
*
*        In the real version, B is passed to DLASDQ and multiplied
*        internally by Q**H. Here B is complex and that product is
*        computed below in two steps (real and imaginary parts).
*
         J = IRWB - 1
         DO 50 JCOL = 1, NRHS
            DO 40 JROW = 1, N
               J = J + 1
               RWORK( J ) = DBLE( B( JROW, JCOL ) )
   40       CONTINUE
   50    CONTINUE
         CALL DGEMM( 'T''N', N, NRHS, N, ONE, RWORK( IRWU ), N,
     $               RWORK( IRWB ), N, ZERO, RWORK( IRWRB ), N )
         J = IRWB - 1
         DO 70 JCOL = 1, NRHS
            DO 60 JROW = 1, N
               J = J + 1
               RWORK( J ) = DIMAG( B( JROW, JCOL ) )
   60       CONTINUE
   70    CONTINUE
         CALL DGEMM( 'T''N', N, NRHS, N, ONE, RWORK( IRWU ), N,
     $               RWORK( IRWB ), N, ZERO, RWORK( IRWIB ), N )
         JREAL = IRWRB - 1
         JIMAG = IRWIB - 1
         DO 90 JCOL = 1, NRHS
            DO 80 JROW = 1, N
               JREAL = JREAL + 1
               JIMAG = JIMAG + 1
               B( JROW, JCOL ) = DCMPLX( RWORK( JREAL ),
     $                           RWORK( JIMAG ) )
   80       CONTINUE
   90    CONTINUE
*
         TOL = RCND*ABS( D( IDAMAX( N, D, 1 ) ) )
         DO 100 I = 1, N
            IF( D( I ).LE.TOL ) THEN
               CALL ZLASET( 'A'1, NRHS, CZERO, CZERO, B( I, 1 ), LDB )
            ELSE
               CALL ZLASCL( 'G'00, D( I ), ONE, 1, NRHS, B( I, 1 ),
     $                      LDB, INFO )
               RANK = RANK + 1
            END IF
  100    CONTINUE
*
*        Since B is complex, the following call to DGEMM is performed
*        in two steps (real and imaginary parts). That is for V * B
*        (in the real version of the code V**H is stored in WORK).
*
*        CALL DGEMM( 'T', 'N', N, NRHS, N, ONE, WORK, N, B, LDB, ZERO,
*    $               WORK( NWORK ), N )
*
         J = IRWB - 1
         DO 120 JCOL = 1, NRHS
            DO 110 JROW = 1, N
               J = J + 1
               RWORK( J ) = DBLE( B( JROW, JCOL ) )
  110       CONTINUE
  120    CONTINUE
         CALL DGEMM( 'T''N', N, NRHS, N, ONE, RWORK( IRWVT ), N,
     $               RWORK( IRWB ), N, ZERO, RWORK( IRWRB ), N )
         J = IRWB - 1
         DO 140 JCOL = 1, NRHS
            DO 130 JROW = 1, N
               J = J + 1
               RWORK( J ) = DIMAG( B( JROW, JCOL ) )
  130       CONTINUE
  140    CONTINUE
         CALL DGEMM( 'T''N', N, NRHS, N, ONE, RWORK( IRWVT ), N,
     $               RWORK( IRWB ), N, ZERO, RWORK( IRWIB ), N )
         JREAL = IRWRB - 1
         JIMAG = IRWIB - 1
         DO 160 JCOL = 1, NRHS
            DO 150 JROW = 1, N
               JREAL = JREAL + 1
               JIMAG = JIMAG + 1
               B( JROW, JCOL ) = DCMPLX( RWORK( JREAL ),
     $                           RWORK( JIMAG ) )
  150       CONTINUE
  160    CONTINUE
*
*        Unscale.
*
         CALL DLASCL( 'G'00, ONE, ORGNRM, N, 1, D, N, INFO )
         CALL DLASRT( 'D', N, D, INFO )
         CALL ZLASCL( 'G'00, ORGNRM, ONE, N, NRHS, B, LDB, INFO )
*
         RETURN
      END IF
*
*     Book-keeping and setting up some constants.
*
      NLVL = INTLOGDBLE( N ) / DBLE( SMLSIZ+1 ) ) / LOG( TWO ) ) + 1
*
      SMLSZP = SMLSIZ + 1
*
      U = 1
      VT = 1 + SMLSIZ*N
      DIFL = VT + SMLSZP*N
      DIFR = DIFL + NLVL*N
      Z = DIFR + NLVL*N*2
      C = Z + NLVL*N
      S = C + N
      POLES = S + N
      GIVNUM = POLES + 2*NLVL*N
      NRWORK = GIVNUM + 2*NLVL*N
      BX = 1
*
      IRWRB = NRWORK
      IRWIB = IRWRB + SMLSIZ*NRHS
      IRWB = IRWIB + SMLSIZ*NRHS
*
      SIZEI = 1 + N
      K = SIZEI + N
      GIVPTR = K + N
      PERM = GIVPTR + N
      GIVCOL = PERM + NLVL*N
      IWK = GIVCOL + NLVL*N*2
*
      ST = 1
      SQRE = 0
      ICMPQ1 = 1
      ICMPQ2 = 0
      NSUB = 0
*
      DO 170 I = 1, N
         IFABS( D( I ) ).LT.EPS ) THEN
            D( I ) = SIGN( EPS, D( I ) )
         END IF
  170 CONTINUE
*
      DO 240 I = 1, NM1
         IF( ( ABS( E( I ) ).LT.EPS ) .OR. ( I.EQ.NM1 ) ) THEN
            NSUB = NSUB + 1
            IWORK( NSUB ) = ST
*
*           Subproblem found. First determine its size and then
*           apply divide and conquer on it.
*
            IF( I.LT.NM1 ) THEN
*
*              A subproblem with E(I) small for I < NM1.
*
               NSIZE = I - ST + 1
               IWORK( SIZEI+NSUB-1 ) = NSIZE
            ELSE IFABS( E( I ) ).GE.EPS ) THEN
*
*              A subproblem with E(NM1) not too small but I = NM1.
*
               NSIZE = N - ST + 1
               IWORK( SIZEI+NSUB-1 ) = NSIZE
            ELSE
*
*              A subproblem with E(NM1) small. This implies an
*              1-by-1 subproblem at D(N), which is not solved
*              explicitly.
*
               NSIZE = I - ST + 1
               IWORK( SIZEI+NSUB-1 ) = NSIZE
               NSUB = NSUB + 1
               IWORK( NSUB ) = N
               IWORK( SIZEI+NSUB-1 ) = 1
               CALL ZCOPY( NRHS, B( N, 1 ), LDB, WORK( BX+NM1 ), N )
            END IF
            ST1 = ST - 1
            IF( NSIZE.EQ.1 ) THEN
*
*              This is a 1-by-1 subproblem and is not solved
*              explicitly.
*
               CALL ZCOPY( NRHS, B( ST, 1 ), LDB, WORK( BX+ST1 ), N )
            ELSE IF( NSIZE.LE.SMLSIZ ) THEN
*
*              This is a small subproblem and is solved by DLASDQ.
*
               CALL DLASET( 'A', NSIZE, NSIZE, ZERO, ONE,
     $                      RWORK( VT+ST1 ), N )
               CALL DLASET( 'A', NSIZE, NSIZE, ZERO, ONE,
     $                      RWORK( U+ST1 ), N )
               CALL DLASDQ( 'U'0, NSIZE, NSIZE, NSIZE, 0, D( ST ),
     $                      E( ST ), RWORK( VT+ST1 ), N, RWORK( U+ST1 ),
     $                      N, RWORK( NRWORK ), 1, RWORK( NRWORK ),
     $                      INFO )
               IF( INFO.NE.0 ) THEN
                  RETURN
               END IF
*
*              In the real version, B is passed to DLASDQ and multiplied
*              internally by Q**H. Here B is complex and that product is
*              computed below in two steps (real and imaginary parts).
*
               J = IRWB - 1
               DO 190 JCOL = 1, NRHS
                  DO 180 JROW = ST, ST + NSIZE - 1
                     J = J + 1
                     RWORK( J ) = DBLE( B( JROW, JCOL ) )
  180             CONTINUE
  190          CONTINUE
               CALL DGEMM( 'T''N', NSIZE, NRHS, NSIZE, ONE,
     $                     RWORK( U+ST1 ), N, RWORK( IRWB ), NSIZE,
     $                     ZERO, RWORK( IRWRB ), NSIZE )
               J = IRWB - 1
               DO 210 JCOL = 1, NRHS
                  DO 200 JROW = ST, ST + NSIZE - 1
                     J = J + 1
                     RWORK( J ) = DIMAG( B( JROW, JCOL ) )
  200             CONTINUE
  210          CONTINUE
               CALL DGEMM( 'T''N', NSIZE, NRHS, NSIZE, ONE,
     $                     RWORK( U+ST1 ), N, RWORK( IRWB ), NSIZE,
     $                     ZERO, RWORK( IRWIB ), NSIZE )
               JREAL = IRWRB - 1
               JIMAG = IRWIB - 1
               DO 230 JCOL = 1, NRHS
                  DO 220 JROW = ST, ST + NSIZE - 1
                     JREAL = JREAL + 1
                     JIMAG = JIMAG + 1
                     B( JROW, JCOL ) = DCMPLX( RWORK( JREAL ),
     $                                 RWORK( JIMAG ) )
  220             CONTINUE
  230          CONTINUE
*
               CALL ZLACPY( 'A', NSIZE, NRHS, B( ST, 1 ), LDB,
     $                      WORK( BX+ST1 ), N )
            ELSE
*
*              A large problem. Solve it using divide and conquer.
*
               CALL DLASDA( ICMPQ1, SMLSIZ, NSIZE, SQRE, D( ST ),
     $                      E( ST ), RWORK( U+ST1 ), N, RWORK( VT+ST1 ),
     $                      IWORK( K+ST1 ), RWORK( DIFL+ST1 ),
     $                      RWORK( DIFR+ST1 ), RWORK( Z+ST1 ),
     $                      RWORK( POLES+ST1 ), IWORK( GIVPTR+ST1 ),
     $                      IWORK( GIVCOL+ST1 ), N, IWORK( PERM+ST1 ),
     $                      RWORK( GIVNUM+ST1 ), RWORK( C+ST1 ),
     $                      RWORK( S+ST1 ), RWORK( NRWORK ),
     $                      IWORK( IWK ), INFO )
               IF( INFO.NE.0 ) THEN
                  RETURN
               END IF
               BXST = BX + ST1
               CALL ZLALSA( ICMPQ2, SMLSIZ, NSIZE, NRHS, B( ST, 1 ),
     $                      LDB, WORK( BXST ), N, RWORK( U+ST1 ), N,
     $                      RWORK( VT+ST1 ), IWORK( K+ST1 ),
     $                      RWORK( DIFL+ST1 ), RWORK( DIFR+ST1 ),
     $                      RWORK( Z+ST1 ), RWORK( POLES+ST1 ),
     $                      IWORK( GIVPTR+ST1 ), IWORK( GIVCOL+ST1 ), N,
     $                      IWORK( PERM+ST1 ), RWORK( GIVNUM+ST1 ),
     $                      RWORK( C+ST1 ), RWORK( S+ST1 ),
     $                      RWORK( NRWORK ), IWORK( IWK ), INFO )
               IF( INFO.NE.0 ) THEN
                  RETURN
               END IF
            END IF
            ST = I + 1
         END IF
  240 CONTINUE
*
*     Apply the singular values and treat the tiny ones as zero.
*
      TOL = RCND*ABS( D( IDAMAX( N, D, 1 ) ) )
*
      DO 250 I = 1, N
*
*        Some of the elements in D can be negative because 1-by-1
*        subproblems were not solved explicitly.
*
         IFABS( D( I ) ).LE.TOL ) THEN
            CALL ZLASET( 'A'1, NRHS, CZERO, CZERO, WORK( BX+I-1 ), N )
         ELSE
            RANK = RANK + 1
            CALL ZLASCL( 'G'00, D( I ), ONE, 1, NRHS,
     $                   WORK( BX+I-1 ), N, INFO )
         END IF
         D( I ) = ABS( D( I ) )
  250 CONTINUE
*
*     Now apply back the right singular vectors.
*
      ICMPQ2 = 1
      DO 320 I = 1, NSUB
         ST = IWORK( I )
         ST1 = ST - 1
         NSIZE = IWORK( SIZEI+I-1 )
         BXST = BX + ST1
         IF( NSIZE.EQ.1 ) THEN
            CALL ZCOPY( NRHS, WORK( BXST ), N, B( ST, 1 ), LDB )
         ELSE IF( NSIZE.LE.SMLSIZ ) THEN
*
*           Since B and BX are complex, the following call to DGEMM
*           is performed in two steps (real and imaginary parts).
*
*           CALL DGEMM( 'T', 'N', NSIZE, NRHS, NSIZE, ONE,
*    $                  RWORK( VT+ST1 ), N, RWORK( BXST ), N, ZERO,
*    $                  B( ST, 1 ), LDB )
*
            J = BXST - N - 1
            JREAL = IRWB - 1
            DO 270 JCOL = 1, NRHS
               J = J + N
               DO 260 JROW = 1, NSIZE
                  JREAL = JREAL + 1
                  RWORK( JREAL ) = DBLE( WORK( J+JROW ) )
  260          CONTINUE
  270       CONTINUE
            CALL DGEMM( 'T''N', NSIZE, NRHS, NSIZE, ONE,
     $                  RWORK( VT+ST1 ), N, RWORK( IRWB ), NSIZE, ZERO,
     $                  RWORK( IRWRB ), NSIZE )
            J = BXST - N - 1
            JIMAG = IRWB - 1
            DO 290 JCOL = 1, NRHS
               J = J + N
               DO 280 JROW = 1, NSIZE
                  JIMAG = JIMAG + 1
                  RWORK( JIMAG ) = DIMAG( WORK( J+JROW ) )
  280          CONTINUE
  290       CONTINUE
            CALL DGEMM( 'T''N', NSIZE, NRHS, NSIZE, ONE,
     $                  RWORK( VT+ST1 ), N, RWORK( IRWB ), NSIZE, ZERO,
     $                  RWORK( IRWIB ), NSIZE )
            JREAL = IRWRB - 1
            JIMAG = IRWIB - 1
            DO 310 JCOL = 1, NRHS
               DO 300 JROW = ST, ST + NSIZE - 1
                  JREAL = JREAL + 1
                  JIMAG = JIMAG + 1
                  B( JROW, JCOL ) = DCMPLX( RWORK( JREAL ),
     $                              RWORK( JIMAG ) )
  300          CONTINUE
  310       CONTINUE
         ELSE
            CALL ZLALSA( ICMPQ2, SMLSIZ, NSIZE, NRHS, WORK( BXST ), N,
     $                   B( ST, 1 ), LDB, RWORK( U+ST1 ), N,
     $                   RWORK( VT+ST1 ), IWORK( K+ST1 ),
     $                   RWORK( DIFL+ST1 ), RWORK( DIFR+ST1 ),
     $                   RWORK( Z+ST1 ), RWORK( POLES+ST1 ),
     $                   IWORK( GIVPTR+ST1 ), IWORK( GIVCOL+ST1 ), N,
     $                   IWORK( PERM+ST1 ), RWORK( GIVNUM+ST1 ),
     $                   RWORK( C+ST1 ), RWORK( S+ST1 ),
     $                   RWORK( NRWORK ), IWORK( IWK ), INFO )
            IF( INFO.NE.0 ) THEN
               RETURN
            END IF
         END IF
  320 CONTINUE
*
*     Unscale and sort the singular values.
*
      CALL DLASCL( 'G'00, ONE, ORGNRM, N, 1, D, N, INFO )
      CALL DLASRT( 'D', N, D, INFO )
      CALL ZLASCL( 'G'00, ORGNRM, ONE, N, NRHS, B, LDB, INFO )
*
      RETURN
*
*     End of ZLALSD
*
      END