1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
      SUBROUTINE ZLAPMT( FORWRD, M, N, X, LDX, K )
*
*  -- LAPACK auxiliary routine (version 3.2) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2006
*
*     .. Scalar Arguments ..
      LOGICAL            FORWRD
      INTEGER            LDX, M, N
*     ..
*     .. Array Arguments ..
      INTEGER            K( * )
      COMPLEX*16         X( LDX, * )
*     ..
*
*  Purpose
*  =======
*
*  ZLAPMT rearranges the columns of the M by N matrix X as specified
*  by the permutation K(1),K(2),...,K(N) of the integers 1,...,N.
*  If FORWRD = .TRUE.,  forward permutation:
*
*       X(*,K(J)) is moved X(*,J) for J = 1,2,...,N.
*
*  If FORWRD = .FALSE., backward permutation:
*
*       X(*,J) is moved to X(*,K(J)) for J = 1,2,...,N.
*
*  Arguments
*  =========
*
*  FORWRD  (input) LOGICAL
*          = .TRUE., forward permutation
*          = .FALSE., backward permutation
*
*  M       (input) INTEGER
*          The number of rows of the matrix X. M >= 0.
*
*  N       (input) INTEGER
*          The number of columns of the matrix X. N >= 0.
*
*  X       (input/output) COMPLEX*16 array, dimension (LDX,N)
*          On entry, the M by N matrix X.
*          On exit, X contains the permuted matrix X.
*
*  LDX     (input) INTEGER
*          The leading dimension of the array X, LDX >= MAX(1,M).
*
*  K       (input/output) INTEGER array, dimension (N)
*          On entry, K contains the permutation vector. K is used as
*          internal workspace, but reset to its original value on
*          output.
*
*  =====================================================================
*
*     .. Local Scalars ..
      INTEGER            I, II, IN, J
      COMPLEX*16         TEMP
*     ..
*     .. Executable Statements ..
*
      IF( N.LE.1 )
     $   RETURN
*
      DO 10 I = 1, N
         K( I ) = -K( I )
   10 CONTINUE
*
      IF( FORWRD ) THEN
*
*        Forward permutation
*
         DO 50 I = 1, N
*
            IF( K( I ).GT.0 )
     $         GO TO 40
*
            J = I
            K( J ) = -K( J )
            IN = K( J )
*
   20       CONTINUE
            IF( K( IN ).GT.0 )
     $         GO TO 40
*
            DO 30 II = 1, M
               TEMP = X( II, J )
               X( II, J ) = X( II, IN )
               X( II, IN ) = TEMP
   30       CONTINUE
*
            K( IN ) = -K( IN )
            J = IN
            IN = K( IN )
            GO TO 20
*
   40       CONTINUE
*
   50    CONTINUE
*
      ELSE
*
*        Backward permutation
*
         DO 90 I = 1, N
*
            IF( K( I ).GT.0 )
     $         GO TO 80
*
            K( I ) = -K( I )
            J = K( I )
   60       CONTINUE
            IF( J.EQ.I )
     $         GO TO 80
*
            DO 70 II = 1, M
               TEMP = X( II, I )
               X( II, I ) = X( II, J )
               X( II, J ) = TEMP
   70       CONTINUE
*
            K( J ) = -K( J )
            J = K( J )
            GO TO 60
*
   80       CONTINUE
*
   90    CONTINUE
*
      END IF
*
      RETURN
*
*     End of ZLAPMT
*
      END