1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
     225
     226
     227
     228
     229
     230
     231
     232
     233
     234
     235
     236
     237
     238
     239
     240
     241
     242
     243
     244
     245
     246
     247
     248
     249
     250
     251
     252
     253
     254
     255
     256
     257
     258
     259
     260
     261
     262
     263
     264
     265
     266
     267
     268
     269
     270
     271
     272
     273
     274
     275
     276
     277
     278
     279
     280
     281
     282
     283
     284
     285
     286
     287
     288
     289
     290
     291
     292
     293
     294
     295
     296
     297
     298
     299
     300
     301
     302
     303
     304
     305
     306
     307
     308
     309
     310
     311
     312
     313
     314
     315
     316
     317
     318
     319
     320
     321
     322
     323
     324
     325
     326
     327
     328
     329
     330
     331
     332
     333
     334
     335
     336
     337
     338
     339
     340
     341
     342
     343
     344
     345
     346
     347
     348
     349
     350
     351
     352
     353
     354
     355
     356
     357
     358
     359
     360
     361
     362
     363
     364
     365
     366
     367
     368
     369
     370
     371
     372
     373
     374
     375
     376
     377
     378
     379
     380
     381
     382
     383
     384
     385
     386
     387
     388
     389
     390
     391
     392
     393
     394
     395
     396
     397
     398
     399
     400
     401
     402
     403
     404
     405
     406
     407
     408
     409
     410
     411
     412
     413
     414
     415
     416
     417
     418
     419
     420
     421
     422
     423
     424
     425
     426
     427
     428
     429
     430
     431
     432
     433
     434
     435
     436
     437
     438
     439
     440
     441
     442
     443
     444
     445
     446
     447
     448
     449
     450
     451
     452
     453
     454
     455
     456
     457
     458
     459
     460
     461
     462
     463
     464
     465
     466
     467
     468
     469
     470
     471
     472
     473
     474
     475
     476
     477
     478
     479
     480
     481
     482
     483
     484
     485
     486
     487
     488
     489
     490
     491
     492
     493
     494
     495
     496
     497
     498
     499
     500
     501
     502
     503
     504
     505
     506
     507
     508
     509
     510
     511
     512
     513
     514
     515
     516
     517
     518
     519
     520
     521
     522
     523
     524
     525
     526
     527
     528
     529
     530
     531
     532
     533
     534
     535
     536
     537
     538
     539
     540
     541
     542
     543
     544
     545
     546
     547
     548
     549
     550
     551
     552
     553
     554
     555
     556
     557
     558
     559
     560
     561
     562
     563
     564
     565
     566
     567
     568
     569
     570
     571
     572
     573
     574
     575
     576
     577
     578
     579
     580
     581
     582
     583
     584
     585
     586
     587
     588
     589
     590
     591
     592
     593
     594
     595
     596
     597
     598
     599
     600
     601
     602
     603
     604
     605
     606
     607
     608
     609
     610
     611
     612
     613
     614
     615
     616
     617
     618
     619
     620
     621
     622
     623
     624
     625
     626
     627
     628
     629
     630
     631
     632
     633
     634
     635
     636
     637
     638
     639
     640
     641
     642
     643
     644
     645
     646
     647
     648
     649
     650
     651
     652
     653
     654
     655
     656
     657
     658
     659
     660
     661
     662
     663
     664
     665
     666
     667
     668
     669
     670
     671
     672
     673
     674
     675
     676
     677
     678
     679
     680
     681
     682
     683
     684
     685
     686
     687
     688
     689
     690
     691
     692
     693
     694
     695
     696
     697
     698
     699
     700
     701
     702
     703
     704
     705
     706
     707
     708
     709
     710
     711
     712
     713
     714
     715
     716
     717
     718
     719
     720
     721
     722
     723
     724
     725
     726
     727
     728
     729
     730
     731
     732
     733
     734
     735
     736
     737
     738
     739
     740
     741
     742
     743
     744
     745
     746
     747
     748
     749
     750
     751
     752
     753
     754
     755
     756
     757
     758
     759
     760
     761
     762
     763
     764
     765
     766
     767
     768
     769
     770
     771
     772
     773
     774
     775
     776
     777
      SUBROUTINE ZLAQR5( WANTT, WANTZ, KACC22, N, KTOP, KBOT, NSHFTS, S,
     $                   H, LDH, ILOZ, IHIZ, Z, LDZ, V, LDV, U, LDU, NV,
     $                   WV, LDWV, NH, WH, LDWH )
*
*  -- LAPACK auxiliary routine (version 3.3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..
*     November 2010
*
*     .. Scalar Arguments ..
      INTEGER            IHIZ, ILOZ, KACC22, KBOT, KTOP, LDH, LDU, LDV,
     $                   LDWH, LDWV, LDZ, N, NH, NSHFTS, NV
      LOGICAL            WANTT, WANTZ
*     ..
*     .. Array Arguments ..
      COMPLEX*16         H( LDH, * ), S( * ), U( LDU, * ), V( LDV, * ),
     $                   WH( LDWH, * ), WV( LDWV, * ), Z( LDZ, * )
*     ..
*
*     This auxiliary subroutine called by ZLAQR0 performs a
*     single small-bulge multi-shift QR sweep.
*
*      WANTT  (input) logical scalar
*             WANTT = .true. if the triangular Schur factor
*             is being computed.  WANTT is set to .false. otherwise.
*
*      WANTZ  (input) logical scalar
*             WANTZ = .true. if the unitary Schur factor is being
*             computed.  WANTZ is set to .false. otherwise.
*
*      KACC22 (input) integer with value 0, 1, or 2.
*             Specifies the computation mode of far-from-diagonal
*             orthogonal updates.
*        = 0: ZLAQR5 does not accumulate reflections and does not
*             use matrix-matrix multiply to update far-from-diagonal
*             matrix entries.
*        = 1: ZLAQR5 accumulates reflections and uses matrix-matrix
*             multiply to update the far-from-diagonal matrix entries.
*        = 2: ZLAQR5 accumulates reflections, uses matrix-matrix
*             multiply to update the far-from-diagonal matrix entries,
*             and takes advantage of 2-by-2 block structure during
*             matrix multiplies.
*
*      N      (input) integer scalar
*             N is the order of the Hessenberg matrix H upon which this
*             subroutine operates.
*
*      KTOP   (input) integer scalar
*      KBOT   (input) integer scalar
*             These are the first and last rows and columns of an
*             isolated diagonal block upon which the QR sweep is to be
*             applied. It is assumed without a check that
*                       either KTOP = 1  or   H(KTOP,KTOP-1) = 0
*             and
*                       either KBOT = N  or   H(KBOT+1,KBOT) = 0.
*
*      NSHFTS (input) integer scalar
*             NSHFTS gives the number of simultaneous shifts.  NSHFTS
*             must be positive and even.
*
*      S      (input/output) COMPLEX*16 array of size (NSHFTS)
*             S contains the shifts of origin that define the multi-
*             shift QR sweep.  On output S may be reordered.
*
*      H      (input/output) COMPLEX*16 array of size (LDH,N)
*             On input H contains a Hessenberg matrix.  On output a
*             multi-shift QR sweep with shifts SR(J)+i*SI(J) is applied
*             to the isolated diagonal block in rows and columns KTOP
*             through KBOT.
*
*      LDH    (input) integer scalar
*             LDH is the leading dimension of H just as declared in the
*             calling procedure.  LDH.GE.MAX(1,N).
*
*      ILOZ   (input) INTEGER
*      IHIZ   (input) INTEGER
*             Specify the rows of Z to which transformations must be
*             applied if WANTZ is .TRUE.. 1 .LE. ILOZ .LE. IHIZ .LE. N
*
*      Z      (input/output) COMPLEX*16 array of size (LDZ,IHI)
*             If WANTZ = .TRUE., then the QR Sweep unitary
*             similarity transformation is accumulated into
*             Z(ILOZ:IHIZ,ILO:IHI) from the right.
*             If WANTZ = .FALSE., then Z is unreferenced.
*
*      LDZ    (input) integer scalar
*             LDA is the leading dimension of Z just as declared in
*             the calling procedure. LDZ.GE.N.
*
*      V      (workspace) COMPLEX*16 array of size (LDV,NSHFTS/2)
*
*      LDV    (input) integer scalar
*             LDV is the leading dimension of V as declared in the
*             calling procedure.  LDV.GE.3.
*
*      U      (workspace) COMPLEX*16 array of size
*             (LDU,3*NSHFTS-3)
*
*      LDU    (input) integer scalar
*             LDU is the leading dimension of U just as declared in the
*             in the calling subroutine.  LDU.GE.3*NSHFTS-3.
*
*      NH     (input) integer scalar
*             NH is the number of columns in array WH available for
*             workspace. NH.GE.1.
*
*      WH     (workspace) COMPLEX*16 array of size (LDWH,NH)
*
*      LDWH   (input) integer scalar
*             Leading dimension of WH just as declared in the
*             calling procedure.  LDWH.GE.3*NSHFTS-3.
*
*      NV     (input) integer scalar
*             NV is the number of rows in WV agailable for workspace.
*             NV.GE.1.
*
*      WV     (workspace) COMPLEX*16 array of size
*             (LDWV,3*NSHFTS-3)
*
*      LDWV   (input) integer scalar
*             LDWV is the leading dimension of WV as declared in the
*             in the calling subroutine.  LDWV.GE.NV.
*
*     ================================================================
*     Based on contributions by
*        Karen Braman and Ralph Byers, Department of Mathematics,
*        University of Kansas, USA
*
*     ================================================================
*     Reference:
*
*     K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
*     Algorithm Part I: Maintaining Well Focused Shifts, and
*     Level 3 Performance, SIAM Journal of Matrix Analysis,
*     volume 23, pages 929--947, 2002.
*
*     ================================================================
*     .. Parameters ..
      COMPLEX*16         ZERO, ONE
      PARAMETER          ( ZERO = ( 0.0d00.0d0 ),
     $                   ONE = ( 1.0d00.0d0 ) )
      DOUBLE PRECISION   RZERO, RONE
      PARAMETER          ( RZERO = 0.0d0, RONE = 1.0d0 )
*     ..
*     .. Local Scalars ..
      COMPLEX*16         ALPHA, BETA, CDUM, REFSUM
      DOUBLE PRECISION   H11, H12, H21, H22, SAFMAX, SAFMIN, SCL,
     $                   SMLNUM, TST1, TST2, ULP
      INTEGER            I2, I4, INCOL, J, J2, J4, JBOT, JCOL, JLEN,
     $                   JROW, JTOP, K, K1, KDU, KMS, KNZ, KRCOL, KZS,
     $                   M, M22, MBOT, MEND, MSTART, MTOP, NBMPS, NDCOL,
     $                   NS, NU
      LOGICAL            ACCUM, BLK22, BMP22
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAMCH
      EXTERNAL           DLAMCH
*     ..
*     .. Intrinsic Functions ..
*
      INTRINSIC          ABSDBLEDCONJGDIMAGMAXMINMOD
*     ..
*     .. Local Arrays ..
      COMPLEX*16         VT( 3 )
*     ..
*     .. External Subroutines ..
      EXTERNAL           DLABAD, ZGEMM, ZLACPY, ZLAQR1, ZLARFG, ZLASET,
     $                   ZTRMM
*     ..
*     .. Statement Functions ..
      DOUBLE PRECISION   CABS1
*     ..
*     .. Statement Function definitions ..
      CABS1( CDUM ) = ABSDBLE( CDUM ) ) + ABSDIMAG( CDUM ) )
*     ..
*     .. Executable Statements ..
*
*     ==== If there are no shifts, then there is nothing to do. ====
*
      IF( NSHFTS.LT.2 )
     $   RETURN
*
*     ==== If the active block is empty or 1-by-1, then there
*     .    is nothing to do. ====
*
      IF( KTOP.GE.KBOT )
     $   RETURN
*
*     ==== NSHFTS is supposed to be even, but if it is odd,
*     .    then simply reduce it by one.  ====
*
      NS = NSHFTS - MOD( NSHFTS, 2 )
*
*     ==== Machine constants for deflation ====
*
      SAFMIN = DLAMCH( 'SAFE MINIMUM' )
      SAFMAX = RONE / SAFMIN
      CALL DLABAD( SAFMIN, SAFMAX )
      ULP = DLAMCH( 'PRECISION' )
      SMLNUM = SAFMIN*DBLE( N ) / ULP )
*
*     ==== Use accumulated reflections to update far-from-diagonal
*     .    entries ? ====
*
      ACCUM = ( KACC22.EQ.1 ) .OR. ( KACC22.EQ.2 )
*
*     ==== If so, exploit the 2-by-2 block structure? ====
*
      BLK22 = ( NS.GT.2 ) .AND. ( KACC22.EQ.2 )
*
*     ==== clear trash ====
*
      IF( KTOP+2.LE.KBOT )
     $   H( KTOP+2, KTOP ) = ZERO
*
*     ==== NBMPS = number of 2-shift bulges in the chain ====
*
      NBMPS = NS / 2
*
*     ==== KDU = width of slab ====
*
      KDU = 6*NBMPS - 3
*
*     ==== Create and chase chains of NBMPS bulges ====
*
      DO 210 INCOL = 3*1-NBMPS ) + KTOP - 1, KBOT - 23*NBMPS - 2
         NDCOL = INCOL + KDU
         IF( ACCUM )
     $      CALL ZLASET( 'ALL', KDU, KDU, ZERO, ONE, U, LDU )
*
*        ==== Near-the-diagonal bulge chase.  The following loop
*        .    performs the near-the-diagonal part of a small bulge
*        .    multi-shift QR sweep.  Each 6*NBMPS-2 column diagonal
*        .    chunk extends from column INCOL to column NDCOL
*        .    (including both column INCOL and column NDCOL). The
*        .    following loop chases a 3*NBMPS column long chain of
*        .    NBMPS bulges 3*NBMPS-2 columns to the right.  (INCOL
*        .    may be less than KTOP and and NDCOL may be greater than
*        .    KBOT indicating phantom columns from which to chase
*        .    bulges before they are actually introduced or to which
*        .    to chase bulges beyond column KBOT.)  ====
*
         DO 140 KRCOL = INCOL, MIN( INCOL+3*NBMPS-3, KBOT-2 )
*
*           ==== Bulges number MTOP to MBOT are active double implicit
*           .    shift bulges.  There may or may not also be small
*           .    2-by-2 bulge, if there is room.  The inactive bulges
*           .    (if any) must wait until the active bulges have moved
*           .    down the diagonal to make room.  The phantom matrix
*           .    paradigm described above helps keep track.  ====
*
            MTOP = MAX1, ( ( KTOP-1 )-KRCOL+2 ) / 3+1 )
            MBOT = MIN( NBMPS, ( KBOT-KRCOL ) / 3 )
            M22 = MBOT + 1
            BMP22 = ( MBOT.LT.NBMPS ) .AND. ( KRCOL+3*( M22-1 ) ).EQ.
     $              ( KBOT-2 )
*
*           ==== Generate reflections to chase the chain right
*           .    one column.  (The minimum value of K is KTOP-1.) ====
*
            DO 10 M = MTOP, MBOT
               K = KRCOL + 3*( M-1 )
               IF( K.EQ.KTOP-1 ) THEN
                  CALL ZLAQR1( 3, H( KTOP, KTOP ), LDH, S( 2*M-1 ),
     $                         S( 2*M ), V( 1, M ) )
                  ALPHA = V( 1, M )
                  CALL ZLARFG( 3, ALPHA, V( 2, M ), 1, V( 1, M ) )
               ELSE
                  BETA = H( K+1, K )
                  V( 2, M ) = H( K+2, K )
                  V( 3, M ) = H( K+3, K )
                  CALL ZLARFG( 3, BETA, V( 2, M ), 1, V( 1, M ) )
*
*                 ==== A Bulge may collapse because of vigilant
*                 .    deflation or destructive underflow.  In the
*                 .    underflow case, try the two-small-subdiagonals
*                 .    trick to try to reinflate the bulge.  ====
*
                  IF( H( K+3, K ).NE.ZERO .OR. H( K+3, K+1 ).NE.
     $                ZERO .OR. H( K+3, K+2 ).EQ.ZERO ) THEN
*
*                    ==== Typical case: not collapsed (yet). ====
*
                     H( K+1, K ) = BETA
                     H( K+2, K ) = ZERO
                     H( K+3, K ) = ZERO
                  ELSE
*
*                    ==== Atypical case: collapsed.  Attempt to
*                    .    reintroduce ignoring H(K+1,K) and H(K+2,K).
*                    .    If the fill resulting from the new
*                    .    reflector is too large, then abandon it.
*                    .    Otherwise, use the new one. ====
*
                     CALL ZLAQR1( 3, H( K+1, K+1 ), LDH, S( 2*M-1 ),
     $                            S( 2*M ), VT )
                     ALPHA = VT( 1 )
                     CALL ZLARFG( 3, ALPHA, VT( 2 ), 1, VT( 1 ) )
                     REFSUM = DCONJG( VT( 1 ) )*
     $                        ( H( K+1, K )+DCONJG( VT( 2 ) )*
     $                        H( K+2, K ) )
*
                     IF( CABS1( H( K+2, K )-REFSUM*VT( 2 ) )+
     $                   CABS1( REFSUM*VT( 3 ) ).GT.ULP*
     $                   ( CABS1( H( K, K ) )+CABS1( H( K+1,
     $                   K+1 ) )+CABS1( H( K+2, K+2 ) ) ) ) THEN
*
*                       ==== Starting a new bulge here would
*                       .    create non-negligible fill.  Use
*                       .    the old one with trepidation. ====
*
                        H( K+1, K ) = BETA
                        H( K+2, K ) = ZERO
                        H( K+3, K ) = ZERO
                     ELSE
*
*                       ==== Stating a new bulge here would
*                       .    create only negligible fill.
*                       .    Replace the old reflector with
*                       .    the new one. ====
*
                        H( K+1, K ) = H( K+1, K ) - REFSUM
                        H( K+2, K ) = ZERO
                        H( K+3, K ) = ZERO
                        V( 1, M ) = VT( 1 )
                        V( 2, M ) = VT( 2 )
                        V( 3, M ) = VT( 3 )
                     END IF
                  END IF
               END IF
   10       CONTINUE
*
*           ==== Generate a 2-by-2 reflection, if needed. ====
*
            K = KRCOL + 3*( M22-1 )
            IF( BMP22 ) THEN
               IF( K.EQ.KTOP-1 ) THEN
                  CALL ZLAQR1( 2, H( K+1, K+1 ), LDH, S( 2*M22-1 ),
     $                         S( 2*M22 ), V( 1, M22 ) )
                  BETA = V( 1, M22 )
                  CALL ZLARFG( 2, BETA, V( 2, M22 ), 1, V( 1, M22 ) )
               ELSE
                  BETA = H( K+1, K )
                  V( 2, M22 ) = H( K+2, K )
                  CALL ZLARFG( 2, BETA, V( 2, M22 ), 1, V( 1, M22 ) )
                  H( K+1, K ) = BETA
                  H( K+2, K ) = ZERO
               END IF
            END IF
*
*           ==== Multiply H by reflections from the left ====
*
            IF( ACCUM ) THEN
               JBOT = MIN( NDCOL, KBOT )
            ELSE IF( WANTT ) THEN
               JBOT = N
            ELSE
               JBOT = KBOT
            END IF
            DO 30 J = MAX( KTOP, KRCOL ), JBOT
               MEND = MIN( MBOT, ( J-KRCOL+2 ) / 3 )
               DO 20 M = MTOP, MEND
                  K = KRCOL + 3*( M-1 )
                  REFSUM = DCONJG( V( 1, M ) )*
     $                     ( H( K+1, J )+DCONJG( V( 2, M ) )*
     $                     H( K+2, J )+DCONJG( V( 3, M ) )*H( K+3, J ) )
                  H( K+1, J ) = H( K+1, J ) - REFSUM
                  H( K+2, J ) = H( K+2, J ) - REFSUM*V( 2, M )
                  H( K+3, J ) = H( K+3, J ) - REFSUM*V( 3, M )
   20          CONTINUE
   30       CONTINUE
            IF( BMP22 ) THEN
               K = KRCOL + 3*( M22-1 )
               DO 40 J = MAX( K+1, KTOP ), JBOT
                  REFSUM = DCONJG( V( 1, M22 ) )*
     $                     ( H( K+1, J )+DCONJG( V( 2, M22 ) )*
     $                     H( K+2, J ) )
                  H( K+1, J ) = H( K+1, J ) - REFSUM
                  H( K+2, J ) = H( K+2, J ) - REFSUM*V( 2, M22 )
   40          CONTINUE
            END IF
*
*           ==== Multiply H by reflections from the right.
*           .    Delay filling in the last row until the
*           .    vigilant deflation check is complete. ====
*
            IF( ACCUM ) THEN
               JTOP = MAX( KTOP, INCOL )
            ELSE IF( WANTT ) THEN
               JTOP = 1
            ELSE
               JTOP = KTOP
            END IF
            DO 80 M = MTOP, MBOT
               IF( V( 1, M ).NE.ZERO ) THEN
                  K = KRCOL + 3*( M-1 )
                  DO 50 J = JTOP, MIN( KBOT, K+3 )
                     REFSUM = V( 1, M )*( H( J, K+1 )+V( 2, M )*
     $                        H( J, K+2 )+V( 3, M )*H( J, K+3 ) )
                     H( J, K+1 ) = H( J, K+1 ) - REFSUM
                     H( J, K+2 ) = H( J, K+2 ) -
     $                             REFSUM*DCONJG( V( 2, M ) )
                     H( J, K+3 ) = H( J, K+3 ) -
     $                             REFSUM*DCONJG( V( 3, M ) )
   50             CONTINUE
*
                  IF( ACCUM ) THEN
*
*                    ==== Accumulate U. (If necessary, update Z later
*                    .    with with an efficient matrix-matrix
*                    .    multiply.) ====
*
                     KMS = K - INCOL
                     DO 60 J = MAX1, KTOP-INCOL ), KDU
                        REFSUM = V( 1, M )*( U( J, KMS+1 )+V( 2, M )*
     $                           U( J, KMS+2 )+V( 3, M )*U( J, KMS+3 ) )
                        U( J, KMS+1 ) = U( J, KMS+1 ) - REFSUM
                        U( J, KMS+2 ) = U( J, KMS+2 ) -
     $                                  REFSUM*DCONJG( V( 2, M ) )
                        U( J, KMS+3 ) = U( J, KMS+3 ) -
     $                                  REFSUM*DCONJG( V( 3, M ) )
   60                CONTINUE
                  ELSE IF( WANTZ ) THEN
*
*                    ==== U is not accumulated, so update Z
*                    .    now by multiplying by reflections
*                    .    from the right. ====
*
                     DO 70 J = ILOZ, IHIZ
                        REFSUM = V( 1, M )*( Z( J, K+1 )+V( 2, M )*
     $                           Z( J, K+2 )+V( 3, M )*Z( J, K+3 ) )
                        Z( J, K+1 ) = Z( J, K+1 ) - REFSUM
                        Z( J, K+2 ) = Z( J, K+2 ) -
     $                                REFSUM*DCONJG( V( 2, M ) )
                        Z( J, K+3 ) = Z( J, K+3 ) -
     $                                REFSUM*DCONJG( V( 3, M ) )
   70                CONTINUE
                  END IF
               END IF
   80       CONTINUE
*
*           ==== Special case: 2-by-2 reflection (if needed) ====
*
            K = KRCOL + 3*( M22-1 )
            IF( BMP22 ) THEN
               IF ( V( 1, M22 ).NE.ZERO ) THEN
                  DO 90 J = JTOP, MIN( KBOT, K+3 )
                     REFSUM = V( 1, M22 )*( H( J, K+1 )+V( 2, M22 )*
     $                        H( J, K+2 ) )
                     H( J, K+1 ) = H( J, K+1 ) - REFSUM
                     H( J, K+2 ) = H( J, K+2 ) -
     $                             REFSUM*DCONJG( V( 2, M22 ) )
   90             CONTINUE
*
                  IF( ACCUM ) THEN
                     KMS = K - INCOL
                     DO 100 J = MAX1, KTOP-INCOL ), KDU
                        REFSUM = V( 1, M22 )*( U( J, KMS+1 )+
     $                           V( 2, M22 )*U( J, KMS+2 ) )
                        U( J, KMS+1 ) = U( J, KMS+1 ) - REFSUM
                        U( J, KMS+2 ) = U( J, KMS+2 ) -
     $                                  REFSUM*DCONJG( V( 2, M22 ) )
  100                CONTINUE
                  ELSE IF( WANTZ ) THEN
                     DO 110 J = ILOZ, IHIZ
                        REFSUM = V( 1, M22 )*( Z( J, K+1 )+V( 2, M22 )*
     $                           Z( J, K+2 ) )
                        Z( J, K+1 ) = Z( J, K+1 ) - REFSUM
                        Z( J, K+2 ) = Z( J, K+2 ) -
     $                                REFSUM*DCONJG( V( 2, M22 ) )
  110                CONTINUE
                  END IF
               END IF
            END IF
*
*           ==== Vigilant deflation check ====
*
            MSTART = MTOP
            IF( KRCOL+3*( MSTART-1 ).LT.KTOP )
     $         MSTART = MSTART + 1
            MEND = MBOT
            IF( BMP22 )
     $         MEND = MEND + 1
            IF( KRCOL.EQ.KBOT-2 )
     $         MEND = MEND + 1
            DO 120 M = MSTART, MEND
               K = MIN( KBOT-1, KRCOL+3*( M-1 ) )
*
*              ==== The following convergence test requires that
*              .    the tradition small-compared-to-nearby-diagonals
*              .    criterion and the Ahues & Tisseur (LAWN 122, 1997)
*              .    criteria both be satisfied.  The latter improves
*              .    accuracy in some examples. Falling back on an
*              .    alternate convergence criterion when TST1 or TST2
*              .    is zero (as done here) is traditional but probably
*              .    unnecessary. ====
*
               IF( H( K+1, K ).NE.ZERO ) THEN
                  TST1 = CABS1( H( K, K ) ) + CABS1( H( K+1, K+1 ) )
                  IF( TST1.EQ.RZERO ) THEN
                     IF( K.GE.KTOP+1 )
     $                  TST1 = TST1 + CABS1( H( K, K-1 ) )
                     IF( K.GE.KTOP+2 )
     $                  TST1 = TST1 + CABS1( H( K, K-2 ) )
                     IF( K.GE.KTOP+3 )
     $                  TST1 = TST1 + CABS1( H( K, K-3 ) )
                     IF( K.LE.KBOT-2 )
     $                  TST1 = TST1 + CABS1( H( K+2, K+1 ) )
                     IF( K.LE.KBOT-3 )
     $                  TST1 = TST1 + CABS1( H( K+3, K+1 ) )
                     IF( K.LE.KBOT-4 )
     $                  TST1 = TST1 + CABS1( H( K+4, K+1 ) )
                  END IF
                  IF( CABS1( H( K+1, K ) ).LE.MAX( SMLNUM, ULP*TST1 ) )
     $                 THEN
                     H12 = MAX( CABS1( H( K+1, K ) ),
     $                     CABS1( H( K, K+1 ) ) )
                     H21 = MIN( CABS1( H( K+1, K ) ),
     $                     CABS1( H( K, K+1 ) ) )
                     H11 = MAX( CABS1( H( K+1, K+1 ) ),
     $                     CABS1( H( K, K )-H( K+1, K+1 ) ) )
                     H22 = MIN( CABS1( H( K+1, K+1 ) ),
     $                     CABS1( H( K, K )-H( K+1, K+1 ) ) )
                     SCL = H11 + H12
                     TST2 = H22*( H11 / SCL )
*
                     IF( TST2.EQ.RZERO .OR. H21*( H12 / SCL ).LE.
     $                   MAX( SMLNUM, ULP*TST2 ) )H( K+1, K ) = ZERO
                  END IF
               END IF
  120       CONTINUE
*
*           ==== Fill in the last row of each bulge. ====
*
            MEND = MIN( NBMPS, ( KBOT-KRCOL-1 ) / 3 )
            DO 130 M = MTOP, MEND
               K = KRCOL + 3*( M-1 )
               REFSUM = V( 1, M )*V( 3, M )*H( K+4, K+3 )
               H( K+4, K+1 ) = -REFSUM
               H( K+4, K+2 ) = -REFSUM*DCONJG( V( 2, M ) )
               H( K+4, K+3 ) = H( K+4, K+3 ) -
     $                         REFSUM*DCONJG( V( 3, M ) )
  130       CONTINUE
*
*           ==== End of near-the-diagonal bulge chase. ====
*
  140    CONTINUE
*
*        ==== Use U (if accumulated) to update far-from-diagonal
*        .    entries in H.  If required, use U to update Z as
*        .    well. ====
*
         IF( ACCUM ) THEN
            IF( WANTT ) THEN
               JTOP = 1
               JBOT = N
            ELSE
               JTOP = KTOP
               JBOT = KBOT
            END IF
            IF( ( .NOT.BLK22 ) .OR. ( INCOL.LT.KTOP ) .OR.
     $          ( NDCOL.GT.KBOT ) .OR. ( NS.LE.2 ) ) THEN
*
*              ==== Updates not exploiting the 2-by-2 block
*              .    structure of U.  K1 and NU keep track of
*              .    the location and size of U in the special
*              .    cases of introducing bulges and chasing
*              .    bulges off the bottom.  In these special
*              .    cases and in case the number of shifts
*              .    is NS = 2, there is no 2-by-2 block
*              .    structure to exploit.  ====
*
               K1 = MAX1, KTOP-INCOL )
               NU = ( KDU-MAX0, NDCOL-KBOT ) ) - K1 + 1
*
*              ==== Horizontal Multiply ====
*
               DO 150 JCOL = MIN( NDCOL, KBOT ) + 1, JBOT, NH
                  JLEN = MIN( NH, JBOT-JCOL+1 )
                  CALL ZGEMM( 'C''N', NU, JLEN, NU, ONE, U( K1, K1 ),
     $                        LDU, H( INCOL+K1, JCOL ), LDH, ZERO, WH,
     $                        LDWH )
                  CALL ZLACPY( 'ALL', NU, JLEN, WH, LDWH,
     $                         H( INCOL+K1, JCOL ), LDH )
  150          CONTINUE
*
*              ==== Vertical multiply ====
*
               DO 160 JROW = JTOP, MAX( KTOP, INCOL ) - 1, NV
                  JLEN = MIN( NV, MAX( KTOP, INCOL )-JROW )
                  CALL ZGEMM( 'N''N', JLEN, NU, NU, ONE,
     $                        H( JROW, INCOL+K1 ), LDH, U( K1, K1 ),
     $                        LDU, ZERO, WV, LDWV )
                  CALL ZLACPY( 'ALL', JLEN, NU, WV, LDWV,
     $                         H( JROW, INCOL+K1 ), LDH )
  160          CONTINUE
*
*              ==== Z multiply (also vertical) ====
*
               IF( WANTZ ) THEN
                  DO 170 JROW = ILOZ, IHIZ, NV
                     JLEN = MIN( NV, IHIZ-JROW+1 )
                     CALL ZGEMM( 'N''N', JLEN, NU, NU, ONE,
     $                           Z( JROW, INCOL+K1 ), LDZ, U( K1, K1 ),
     $                           LDU, ZERO, WV, LDWV )
                     CALL ZLACPY( 'ALL', JLEN, NU, WV, LDWV,
     $                            Z( JROW, INCOL+K1 ), LDZ )
  170             CONTINUE
               END IF
            ELSE
*
*              ==== Updates exploiting U's 2-by-2 block structure.
*              .    (I2, I4, J2, J4 are the last rows and columns
*              .    of the blocks.) ====
*
               I2 = ( KDU+1 ) / 2
               I4 = KDU
               J2 = I4 - I2
               J4 = KDU
*
*              ==== KZS and KNZ deal with the band of zeros
*              .    along the diagonal of one of the triangular
*              .    blocks. ====
*
               KZS = ( J4-J2 ) - ( NS+1 )
               KNZ = NS + 1
*
*              ==== Horizontal multiply ====
*
               DO 180 JCOL = MIN( NDCOL, KBOT ) + 1, JBOT, NH
                  JLEN = MIN( NH, JBOT-JCOL+1 )
*
*                 ==== Copy bottom of H to top+KZS of scratch ====
*                  (The first KZS rows get multiplied by zero.) ====
*
                  CALL ZLACPY( 'ALL', KNZ, JLEN, H( INCOL+1+J2, JCOL ),
     $                         LDH, WH( KZS+11 ), LDWH )
*
*                 ==== Multiply by U21**H ====
*
                  CALL ZLASET( 'ALL', KZS, JLEN, ZERO, ZERO, WH, LDWH )
                  CALL ZTRMM( 'L''U''C''N', KNZ, JLEN, ONE,
     $                        U( J2+11+KZS ), LDU, WH( KZS+11 ),
     $                        LDWH )
*
*                 ==== Multiply top of H by U11**H ====
*
                  CALL ZGEMM( 'C''N', I2, JLEN, J2, ONE, U, LDU,
     $                        H( INCOL+1, JCOL ), LDH, ONE, WH, LDWH )
*
*                 ==== Copy top of H to bottom of WH ====
*
                  CALL ZLACPY( 'ALL', J2, JLEN, H( INCOL+1, JCOL ), LDH,
     $                         WH( I2+11 ), LDWH )
*
*                 ==== Multiply by U21**H ====
*
                  CALL ZTRMM( 'L''L''C''N', J2, JLEN, ONE,
     $                        U( 1, I2+1 ), LDU, WH( I2+11 ), LDWH )
*
*                 ==== Multiply by U22 ====
*
                  CALL ZGEMM( 'C''N', I4-I2, JLEN, J4-J2, ONE,
     $                        U( J2+1, I2+1 ), LDU,
     $                        H( INCOL+1+J2, JCOL ), LDH, ONE,
     $                        WH( I2+11 ), LDWH )
*
*                 ==== Copy it back ====
*
                  CALL ZLACPY( 'ALL', KDU, JLEN, WH, LDWH,
     $                         H( INCOL+1, JCOL ), LDH )
  180          CONTINUE
*
*              ==== Vertical multiply ====
*
               DO 190 JROW = JTOP, MAX( INCOL, KTOP ) - 1, NV
                  JLEN = MIN( NV, MAX( INCOL, KTOP )-JROW )
*
*                 ==== Copy right of H to scratch (the first KZS
*                 .    columns get multiplied by zero) ====
*
                  CALL ZLACPY( 'ALL', JLEN, KNZ, H( JROW, INCOL+1+J2 ),
     $                         LDH, WV( 11+KZS ), LDWV )
*
*                 ==== Multiply by U21 ====
*
                  CALL ZLASET( 'ALL', JLEN, KZS, ZERO, ZERO, WV, LDWV )
                  CALL ZTRMM( 'R''U''N''N', JLEN, KNZ, ONE,
     $                        U( J2+11+KZS ), LDU, WV( 11+KZS ),
     $                        LDWV )
*
*                 ==== Multiply by U11 ====
*
                  CALL ZGEMM( 'N''N', JLEN, I2, J2, ONE,
     $                        H( JROW, INCOL+1 ), LDH, U, LDU, ONE, WV,
     $                        LDWV )
*
*                 ==== Copy left of H to right of scratch ====
*
                  CALL ZLACPY( 'ALL', JLEN, J2, H( JROW, INCOL+1 ), LDH,
     $                         WV( 11+I2 ), LDWV )
*
*                 ==== Multiply by U21 ====
*
                  CALL ZTRMM( 'R''L''N''N', JLEN, I4-I2, ONE,
     $                        U( 1, I2+1 ), LDU, WV( 11+I2 ), LDWV )
*
*                 ==== Multiply by U22 ====
*
                  CALL ZGEMM( 'N''N', JLEN, I4-I2, J4-J2, ONE,
     $                        H( JROW, INCOL+1+J2 ), LDH,
     $                        U( J2+1, I2+1 ), LDU, ONE, WV( 11+I2 ),
     $                        LDWV )
*
*                 ==== Copy it back ====
*
                  CALL ZLACPY( 'ALL', JLEN, KDU, WV, LDWV,
     $                         H( JROW, INCOL+1 ), LDH )
  190          CONTINUE
*
*              ==== Multiply Z (also vertical) ====
*
               IF( WANTZ ) THEN
                  DO 200 JROW = ILOZ, IHIZ, NV
                     JLEN = MIN( NV, IHIZ-JROW+1 )
*
*                    ==== Copy right of Z to left of scratch (first
*                    .     KZS columns get multiplied by zero) ====
*
                     CALL ZLACPY( 'ALL', JLEN, KNZ,
     $                            Z( JROW, INCOL+1+J2 ), LDZ,
     $                            WV( 11+KZS ), LDWV )
*
*                    ==== Multiply by U12 ====
*
                     CALL ZLASET( 'ALL', JLEN, KZS, ZERO, ZERO, WV,
     $                            LDWV )
                     CALL ZTRMM( 'R''U''N''N', JLEN, KNZ, ONE,
     $                           U( J2+11+KZS ), LDU, WV( 11+KZS ),
     $                           LDWV )
*
*                    ==== Multiply by U11 ====
*
                     CALL ZGEMM( 'N''N', JLEN, I2, J2, ONE,
     $                           Z( JROW, INCOL+1 ), LDZ, U, LDU, ONE,
     $                           WV, LDWV )
*
*                    ==== Copy left of Z to right of scratch ====
*
                     CALL ZLACPY( 'ALL', JLEN, J2, Z( JROW, INCOL+1 ),
     $                            LDZ, WV( 11+I2 ), LDWV )
*
*                    ==== Multiply by U21 ====
*
                     CALL ZTRMM( 'R''L''N''N', JLEN, I4-I2, ONE,
     $                           U( 1, I2+1 ), LDU, WV( 11+I2 ),
     $                           LDWV )
*
*                    ==== Multiply by U22 ====
*
                     CALL ZGEMM( 'N''N', JLEN, I4-I2, J4-J2, ONE,
     $                           Z( JROW, INCOL+1+J2 ), LDZ,
     $                           U( J2+1, I2+1 ), LDU, ONE,
     $                           WV( 11+I2 ), LDWV )
*
*                    ==== Copy the result back to Z ====
*
                     CALL ZLACPY( 'ALL', JLEN, KDU, WV, LDWV,
     $                            Z( JROW, INCOL+1 ), LDZ )
  200             CONTINUE
               END IF
            END IF
         END IF
  210 CONTINUE
*
*     ==== End of ZLAQR5 ====
*
      END