1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
     225
     226
     227
     228
     229
     230
     231
     232
     233
     234
     235
     236
     237
     238
     239
     240
     241
     242
     243
     244
     245
     246
     247
     248
     249
     250
     251
     252
     253
     254
     255
     256
     257
     258
     259
     260
     261
     262
     263
     264
     265
      SUBROUTINE ZPBSTF( UPLO, N, KD, AB, LDAB, INFO )
*
*  -- LAPACK routine (version 3.2) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2006
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            INFO, KD, LDAB, N
*     ..
*     .. Array Arguments ..
      COMPLEX*16         AB( LDAB, * )
*     ..
*
*  Purpose
*  =======
*
*  ZPBSTF computes a split Cholesky factorization of a complex
*  Hermitian positive definite band matrix A.
*
*  This routine is designed to be used in conjunction with ZHBGST.
*
*  The factorization has the form  A = S**H*S  where S is a band matrix
*  of the same bandwidth as A and the following structure:
*
*    S = ( U    )
*        ( M  L )
*
*  where U is upper triangular of order m = (n+kd)/2, and L is lower
*  triangular of order n-m.
*
*  Arguments
*  =========
*
*  UPLO    (input) CHARACTER*1
*          = 'U':  Upper triangle of A is stored;
*          = 'L':  Lower triangle of A is stored.
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.
*
*  KD      (input) INTEGER
*          The number of superdiagonals of the matrix A if UPLO = 'U',
*          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
*
*  AB      (input/output) COMPLEX*16 array, dimension (LDAB,N)
*          On entry, the upper or lower triangle of the Hermitian band
*          matrix A, stored in the first kd+1 rows of the array.  The
*          j-th column of A is stored in the j-th column of the array AB
*          as follows:
*          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
*          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
*
*          On exit, if INFO = 0, the factor S from the split Cholesky
*          factorization A = S**H*S. See Further Details.
*
*  LDAB    (input) INTEGER
*          The leading dimension of the array AB.  LDAB >= KD+1.
*
*  INFO    (output) INTEGER
*          = 0: successful exit
*          < 0: if INFO = -i, the i-th argument had an illegal value
*          > 0: if INFO = i, the factorization could not be completed,
*               because the updated element a(i,i) was negative; the
*               matrix A is not positive definite.
*
*  Further Details
*  ===============
*
*  The band storage scheme is illustrated by the following example, when
*  N = 7, KD = 2:
*
*  S = ( s11  s12  s13                     )
*      (      s22  s23  s24                )
*      (           s33  s34                )
*      (                s44                )
*      (           s53  s54  s55           )
*      (                s64  s65  s66      )
*      (                     s75  s76  s77 )
*
*  If UPLO = 'U', the array AB holds:
*
*  on entry:                          on exit:
*
*   *    *   a13  a24  a35  a46  a57   *    *   s13  s24  s53**H s64**H s75**H
*   *   a12  a23  a34  a45  a56  a67   *   s12  s23  s34  s54**H s65**H s76**H
*  a11  a22  a33  a44  a55  a66  a77  s11  s22  s33  s44  s55    s66    s77
*
*  If UPLO = 'L', the array AB holds:
*
*  on entry:                          on exit:
*
*  a11  a22  a33  a44  a55  a66  a77  s11    s22    s33    s44  s55  s66  s77
*  a21  a32  a43  a54  a65  a76   *   s12**H s23**H s34**H s54  s65  s76   *
*  a31  a42  a53  a64  a64   *    *   s13**H s24**H s53    s64  s75   *    *
*
*  Array elements marked * are not used by the routine; s12**H denotes
*  conjg(s12); the diagonal elements of S are real.

*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            UPPER
      INTEGER            J, KLD, KM, M
      DOUBLE PRECISION   AJJ
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA, ZDSCAL, ZHER, ZLACGV
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DBLEMAXMINSQRT
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      UPPER = LSAME( UPLO, 'U' )
      IF.NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( KD.LT.0 ) THEN
         INFO = -3
      ELSE IF( LDAB.LT.KD+1 ) THEN
         INFO = -5
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'ZPBSTF'-INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
      KLD = MAX1, LDAB-1 )
*
*     Set the splitting point m.
*
      M = ( N+KD ) / 2
*
      IF( UPPER ) THEN
*
*        Factorize A(m+1:n,m+1:n) as L**H*L, and update A(1:m,1:m).
*
         DO 10 J = N, M + 1-1
*
*           Compute s(j,j) and test for non-positive-definiteness.
*
            AJJ = DBLE( AB( KD+1, J ) )
            IF( AJJ.LE.ZERO ) THEN
               AB( KD+1, J ) = AJJ
               GO TO 50
            END IF
            AJJ = SQRT( AJJ )
            AB( KD+1, J ) = AJJ
            KM = MIN( J-1, KD )
*
*           Compute elements j-km:j-1 of the j-th column and update the
*           the leading submatrix within the band.
*
            CALL ZDSCAL( KM, ONE / AJJ, AB( KD+1-KM, J ), 1 )
            CALL ZHER( 'Upper', KM, -ONE, AB( KD+1-KM, J ), 1,
     $                 AB( KD+1, J-KM ), KLD )
   10    CONTINUE
*
*        Factorize the updated submatrix A(1:m,1:m) as U**H*U.
*
         DO 20 J = 1, M
*
*           Compute s(j,j) and test for non-positive-definiteness.
*
            AJJ = DBLE( AB( KD+1, J ) )
            IF( AJJ.LE.ZERO ) THEN
               AB( KD+1, J ) = AJJ
               GO TO 50
            END IF
            AJJ = SQRT( AJJ )
            AB( KD+1, J ) = AJJ
            KM = MIN( KD, M-J )
*
*           Compute elements j+1:j+km of the j-th row and update the
*           trailing submatrix within the band.
*
            IF( KM.GT.0 ) THEN
               CALL ZDSCAL( KM, ONE / AJJ, AB( KD, J+1 ), KLD )
               CALL ZLACGV( KM, AB( KD, J+1 ), KLD )
               CALL ZHER( 'Upper', KM, -ONE, AB( KD, J+1 ), KLD,
     $                    AB( KD+1, J+1 ), KLD )
               CALL ZLACGV( KM, AB( KD, J+1 ), KLD )
            END IF
   20    CONTINUE
      ELSE
*
*        Factorize A(m+1:n,m+1:n) as L**H*L, and update A(1:m,1:m).
*
         DO 30 J = N, M + 1-1
*
*           Compute s(j,j) and test for non-positive-definiteness.
*
            AJJ = DBLE( AB( 1, J ) )
            IF( AJJ.LE.ZERO ) THEN
               AB( 1, J ) = AJJ
               GO TO 50
            END IF
            AJJ = SQRT( AJJ )
            AB( 1, J ) = AJJ
            KM = MIN( J-1, KD )
*
*           Compute elements j-km:j-1 of the j-th row and update the
*           trailing submatrix within the band.
*
            CALL ZDSCAL( KM, ONE / AJJ, AB( KM+1, J-KM ), KLD )
            CALL ZLACGV( KM, AB( KM+1, J-KM ), KLD )
            CALL ZHER( 'Lower', KM, -ONE, AB( KM+1, J-KM ), KLD,
     $                 AB( 1, J-KM ), KLD )
            CALL ZLACGV( KM, AB( KM+1, J-KM ), KLD )
   30    CONTINUE
*
*        Factorize the updated submatrix A(1:m,1:m) as U**H*U.
*
         DO 40 J = 1, M
*
*           Compute s(j,j) and test for non-positive-definiteness.
*
            AJJ = DBLE( AB( 1, J ) )
            IF( AJJ.LE.ZERO ) THEN
               AB( 1, J ) = AJJ
               GO TO 50
            END IF
            AJJ = SQRT( AJJ )
            AB( 1, J ) = AJJ
            KM = MIN( KD, M-J )
*
*           Compute elements j+1:j+km of the j-th column and update the
*           trailing submatrix within the band.
*
            IF( KM.GT.0 ) THEN
               CALL ZDSCAL( KM, ONE / AJJ, AB( 2, J ), 1 )
               CALL ZHER( 'Lower', KM, -ONE, AB( 2, J ), 1,
     $                    AB( 1, J+1 ), KLD )
            END IF
   40    CONTINUE
      END IF
      RETURN
*
   50 CONTINUE
      INFO = J
      RETURN
*
*     End of ZPBSTF
*
      END