1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
     225
     226
     227
     228
     229
     230
     231
     232
     233
     234
     235
     236
     237
     238
     239
     240
     241
     242
     243
     244
     245
     246
     247
     248
     249
     250
     251
     252
     253
     254
     255
     256
     257
     258
     259
     260
     261
     262
     263
     264
     265
     266
     267
     268
     269
     270
     271
     272
     273
     274
     275
     276
     277
     278
     279
     280
     281
     282
     283
     284
     285
     286
     287
     288
     289
     290
     291
     292
     293
     294
     295
     296
     297
     298
     299
     300
     301
     302
     303
     304
     305
     306
     307
     308
     309
     310
     311
     312
     313
     314
     315
     316
     317
     318
     319
     320
     321
     322
     323
     324
     325
     326
     327
     328
     329
     330
     331
     332
     333
     334
     335
     336
     337
     338
     339
     340
     341
     342
     343
     344
     345
     346
     347
     348
     349
     350
     351
     352
     353
     354
     355
     356
     357
     358
     359
     360
     361
     362
     363
     364
     365
     366
     367
     368
     369
     370
     371
     372
     373
     374
     375
     376
     377
     378
     379
     380
     381
     382
     383
     384
     385
     386
     387
     388
      SUBROUTINE ZPSTRF( UPLO, N, A, LDA, PIV, RANK, TOL, WORK, INFO )
*
*  -- LAPACK routine (version 3.2.2)                                  --
*     
*  -- Contributed by Craig Lucas, University of Manchester / NAG Ltd. --
*  -- June 2010                                                       --
*
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*
*     .. Scalar Arguments ..
      DOUBLE PRECISION   TOL
      INTEGER            INFO, LDA, N, RANK
      CHARACTER          UPLO
*     ..
*     .. Array Arguments ..
      COMPLEX*16         A( LDA, * )
      DOUBLE PRECISION   WORK( 2*N )
      INTEGER            PIV( N )
*     ..
*
*  Purpose
*  =======
*
*  ZPSTRF computes the Cholesky factorization with complete
*  pivoting of a complex Hermitian positive semidefinite matrix A.
*
*  The factorization has the form
*     P**T * A * P = U**H * U ,  if UPLO = 'U',
*     P**T * A * P = L  * L**H,  if UPLO = 'L',
*  where U is an upper triangular matrix and L is lower triangular, and
*  P is stored as vector PIV.
*
*  This algorithm does not attempt to check that A is positive
*  semidefinite. This version of the algorithm calls level 3 BLAS.
*
*  Arguments
*  =========
*
*  UPLO    (input) CHARACTER*1
*          Specifies whether the upper or lower triangular part of the
*          symmetric matrix A is stored.
*          = 'U':  Upper triangular
*          = 'L':  Lower triangular
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.
*
*  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
*          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
*          n by n upper triangular part of A contains the upper
*          triangular part of the matrix A, and the strictly lower
*          triangular part of A is not referenced.  If UPLO = 'L', the
*          leading n by n lower triangular part of A contains the lower
*          triangular part of the matrix A, and the strictly upper
*          triangular part of A is not referenced.
*
*          On exit, if INFO = 0, the factor U or L from the Cholesky
*          factorization as above.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,N).
*
*  PIV     (output) INTEGER array, dimension (N)
*          PIV is such that the nonzero entries are P( PIV(K), K ) = 1.
*
*  RANK    (output) INTEGER
*          The rank of A given by the number of steps the algorithm
*          completed.
*
*  TOL     (input) DOUBLE PRECISION
*          User defined tolerance. If TOL < 0, then N*U*MAX( A(K,K) )
*          will be used. The algorithm terminates at the (K-1)st step
*          if the pivot <= TOL.
*
*  WORK    (workspace) DOUBLE PRECISION array, dimension (2*N)
*          Work space.
*
*  INFO    (output) INTEGER
*          < 0: If INFO = -K, the K-th argument had an illegal value,
*          = 0: algorithm completed successfully, and
*          > 0: the matrix A is either rank deficient with computed rank
*               as returned in RANK, or is indefinite.  See Section 7 of
*               LAPACK Working Note #161 for further information.
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
      COMPLEX*16         CONE
      PARAMETER          ( CONE = ( 1.0D+00.0D+0 ) )
*     ..
*     .. Local Scalars ..
      COMPLEX*16         ZTEMP
      DOUBLE PRECISION   AJJ, DSTOP, DTEMP
      INTEGER            I, ITEMP, J, JB, K, NB, PVT
      LOGICAL            UPPER
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAMCH
      INTEGER            ILAENV
      LOGICAL            LSAME, DISNAN
      EXTERNAL           DLAMCH, ILAENV, LSAME, DISNAN
*     ..
*     .. External Subroutines ..
      EXTERNAL           ZDSCAL, ZGEMV, ZHERK, ZLACGV, ZPSTF2, ZSWAP,
     $                   XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DBLEDCONJGMAXMINSQRTMAXLOC
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      UPPER = LSAME( UPLO, 'U' )
      IF.NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( LDA.LT.MAX1, N ) ) THEN
         INFO = -4
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'ZPSTRF'-INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
*     Get block size
*
      NB = ILAENV( 1'ZPOTRF', UPLO, N, -1-1-1 )
      IF( NB.LE.1 .OR. NB.GE.N ) THEN
*
*        Use unblocked code
*
         CALL ZPSTF2( UPLO, N, A( 11 ), LDA, PIV, RANK, TOL, WORK,
     $                INFO )
         GO TO 230
*
      ELSE
*
*     Initialize PIV
*
         DO 100 I = 1, N
            PIV( I ) = I
  100    CONTINUE
*
*     Compute stopping value
*
         DO 110 I = 1, N
            WORK( I ) = DBLE( A( I, I ) )
  110    CONTINUE
         PVT = MAXLOC( WORK( 1:N ), 1 )
         AJJ = DBLE( A( PVT, PVT ) )
         IF( AJJ.EQ.ZERO.OR.DISNAN( AJJ ) ) THEN
            RANK = 0
            INFO = 1
            GO TO 230
         END IF
*
*     Compute stopping value if not supplied
*
         IF( TOL.LT.ZERO ) THEN
            DSTOP = N * DLAMCH( 'Epsilon' ) * AJJ
         ELSE
            DSTOP = TOL
         END IF
*
*
         IF( UPPER ) THEN
*
*           Compute the Cholesky factorization P**T * A * P = U**H * U
*
            DO 160 K = 1, N, NB
*
*              Account for last block not being NB wide
*
               JB = MIN( NB, N-K+1 )
*
*              Set relevant part of first half of WORK to zero,
*              holds dot products
*
               DO 120 I = K, N
                  WORK( I ) = 0
  120          CONTINUE
*
               DO 150 J = K, K + JB - 1
*
*              Find pivot, test for exit, else swap rows and columns
*              Update dot products, compute possible pivots which are
*              stored in the second half of WORK
*
                  DO 130 I = J, N
*
                     IF( J.GT.K ) THEN
                        WORK( I ) = WORK( I ) +
     $                              DBLEDCONJG( A( J-1, I ) )*
     $                                    A( J-1, I ) )
                     END IF
                     WORK( N+I ) = DBLE( A( I, I ) ) - WORK( I )
*
  130             CONTINUE
*
                  IF( J.GT.1 ) THEN
                     ITEMP = MAXLOC( WORK( (N+J):(2*N) ), 1 )
                     PVT = ITEMP + J - 1
                     AJJ = WORK( N+PVT )
                     IF( AJJ.LE.DSTOP.OR.DISNAN( AJJ ) ) THEN
                        A( J, J ) = AJJ
                        GO TO 220
                     END IF
                  END IF
*
                  IF( J.NE.PVT ) THEN
*
*                    Pivot OK, so can now swap pivot rows and columns
*
                     A( PVT, PVT ) = A( J, J )
                     CALL ZSWAP( J-1, A( 1, J ), 1, A( 1, PVT ), 1 )
                     IF( PVT.LT.N )
     $                  CALL ZSWAP( N-PVT, A( J, PVT+1 ), LDA,
     $                              A( PVT, PVT+1 ), LDA )
                     DO 140 I = J + 1, PVT - 1
                        ZTEMP = DCONJG( A( J, I ) )
                        A( J, I ) = DCONJG( A( I, PVT ) )
                        A( I, PVT ) = ZTEMP
  140                CONTINUE
                     A( J, PVT ) = DCONJG( A( J, PVT ) )
*
*                    Swap dot products and PIV
*
                     DTEMP = WORK( J )
                     WORK( J ) = WORK( PVT )
                     WORK( PVT ) = DTEMP
                     ITEMP = PIV( PVT )
                     PIV( PVT ) = PIV( J )
                     PIV( J ) = ITEMP
                  END IF
*
                  AJJ = SQRT( AJJ )
                  A( J, J ) = AJJ
*
*                 Compute elements J+1:N of row J.
*
                  IF( J.LT.N ) THEN
                     CALL ZLACGV( J-1, A( 1, J ), 1 )
                     CALL ZGEMV( 'Trans', J-K, N-J, -CONE, A( K, J+1 ),
     $                           LDA, A( K, J ), 1, CONE, A( J, J+1 ),
     $                           LDA )
                     CALL ZLACGV( J-1, A( 1, J ), 1 )
                     CALL ZDSCAL( N-J, ONE / AJJ, A( J, J+1 ), LDA )
                  END IF
*
  150          CONTINUE
*
*              Update trailing matrix, J already incremented
*
               IF( K+JB.LE.N ) THEN
                  CALL ZHERK( 'Upper''Conj Trans', N-J+1, JB, -ONE,
     $                        A( K, J ), LDA, ONE, A( J, J ), LDA )
               END IF
*
  160       CONTINUE
*
         ELSE
*
*        Compute the Cholesky factorization P**T * A * P = L * L**H
*
            DO 210 K = 1, N, NB
*
*              Account for last block not being NB wide
*
               JB = MIN( NB, N-K+1 )
*
*              Set relevant part of first half of WORK to zero,
*              holds dot products
*
               DO 170 I = K, N
                  WORK( I ) = 0
  170          CONTINUE
*
               DO 200 J = K, K + JB - 1
*
*              Find pivot, test for exit, else swap rows and columns
*              Update dot products, compute possible pivots which are
*              stored in the second half of WORK
*
                  DO 180 I = J, N
*
                     IF( J.GT.K ) THEN
                        WORK( I ) = WORK( I ) +
     $                              DBLEDCONJG( A( I, J-1 ) )*
     $                                    A( I, J-1 ) )
                     END IF
                     WORK( N+I ) = DBLE( A( I, I ) ) - WORK( I )
*
  180             CONTINUE
*
                  IF( J.GT.1 ) THEN
                     ITEMP = MAXLOC( WORK( (N+J):(2*N) ), 1 )
                     PVT = ITEMP + J - 1
                     AJJ = WORK( N+PVT )
                     IF( AJJ.LE.DSTOP.OR.DISNAN( AJJ ) ) THEN
                        A( J, J ) = AJJ
                        GO TO 220
                     END IF
                  END IF
*
                  IF( J.NE.PVT ) THEN
*
*                    Pivot OK, so can now swap pivot rows and columns
*
                     A( PVT, PVT ) = A( J, J )
                     CALL ZSWAP( J-1, A( J, 1 ), LDA, A( PVT, 1 ), LDA )
                     IF( PVT.LT.N )
     $                  CALL ZSWAP( N-PVT, A( PVT+1, J ), 1,
     $                              A( PVT+1, PVT ), 1 )
                     DO 190 I = J + 1, PVT - 1
                        ZTEMP = DCONJG( A( I, J ) )
                        A( I, J ) = DCONJG( A( PVT, I ) )
                        A( PVT, I ) = ZTEMP
  190                CONTINUE
                     A( PVT, J ) = DCONJG( A( PVT, J ) )
*
*
*                    Swap dot products and PIV
*
                     DTEMP = WORK( J )
                     WORK( J ) = WORK( PVT )
                     WORK( PVT ) = DTEMP
                     ITEMP = PIV( PVT )
                     PIV( PVT ) = PIV( J )
                     PIV( J ) = ITEMP
                  END IF
*
                  AJJ = SQRT( AJJ )
                  A( J, J ) = AJJ
*
*                 Compute elements J+1:N of column J.
*
                  IF( J.LT.N ) THEN
                     CALL ZLACGV( J-1, A( J, 1 ), LDA )
                     CALL ZGEMV( 'No Trans', N-J, J-K, -CONE,
     $                           A( J+1, K ), LDA, A( J, K ), LDA, CONE,
     $                           A( J+1, J ), 1 )
                     CALL ZLACGV( J-1, A( J, 1 ), LDA )
                     CALL ZDSCAL( N-J, ONE / AJJ, A( J+1, J ), 1 )
                  END IF
*
  200          CONTINUE
*
*              Update trailing matrix, J already incremented
*
               IF( K+JB.LE.N ) THEN
                  CALL ZHERK( 'Lower''No Trans', N-J+1, JB, -ONE,
     $                        A( J, K ), LDA, ONE, A( J, J ), LDA )
               END IF
*
  210       CONTINUE
*
         END IF
      END IF
*
*     Ran to completion, A has full rank
*
      RANK = N
*
      GO TO 230
  220 CONTINUE
*
*     Rank is the number of steps completed.  Set INFO = 1 to signal
*     that the factorization cannot be used to solve a system.
*
      RANK = J - 1
      INFO = 1
*
  230 CONTINUE
      RETURN
*
*     End of ZPSTRF
*
      END