1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
     225
     226
     227
     228
     229
     230
     231
     232
     233
     234
     235
     236
     237
     238
     239
     240
     241
     242
     243
     244
     245
     246
     247
     248
     249
     250
     251
     252
     253
     254
     255
     256
     257
     258
     259
     260
     261
     262
     263
     264
     265
     266
     267
     268
     269
     270
     271
     272
     273
     274
     275
     276
     277
     278
     279
     280
     281
     282
     283
     284
     285
     286
     287
     288
     289
     290
     291
     292
     293
     294
     295
     296
     297
     298
     299
     300
     301
     302
     303
     304
     305
     306
     307
     308
     309
     310
     311
     312
     313
     314
     315
     316
     317
     318
     319
     320
     321
     322
     323
     324
     325
     326
     327
     328
     329
     330
     331
     332
     333
     334
     335
     336
     337
     338
     339
     340
     341
     342
     343
     344
     345
     346
     347
     348
     349
     350
     351
     352
     353
     354
     355
     356
     357
     358
     359
     360
     361
     362
     363
     364
     365
     366
     367
     368
     369
     370
     371
     372
     373
     374
     375
     376
     377
      SUBROUTINE ZSTEIN( N, D, E, M, W, IBLOCK, ISPLIT, Z, LDZ, WORK,
     $                   IWORK, IFAIL, INFO )
*
*  -- LAPACK routine (version 3.2) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2006
*
*     .. Scalar Arguments ..
      INTEGER            INFO, LDZ, M, N
*     ..
*     .. Array Arguments ..
      INTEGER            IBLOCK( * ), IFAIL( * ), ISPLIT( * ),
     $                   IWORK( * )
      DOUBLE PRECISION   D( * ), E( * ), W( * ), WORK( * )
      COMPLEX*16         Z( LDZ, * )
*     ..
*
*  Purpose
*  =======
*
*  ZSTEIN computes the eigenvectors of a real symmetric tridiagonal
*  matrix T corresponding to specified eigenvalues, using inverse
*  iteration.
*
*  The maximum number of iterations allowed for each eigenvector is
*  specified by an internal parameter MAXITS (currently set to 5).
*
*  Although the eigenvectors are real, they are stored in a complex
*  array, which may be passed to ZUNMTR or ZUPMTR for back
*  transformation to the eigenvectors of a complex Hermitian matrix
*  which was reduced to tridiagonal form.
*
*
*  Arguments
*  =========
*
*  N       (input) INTEGER
*          The order of the matrix.  N >= 0.
*
*  D       (input) DOUBLE PRECISION array, dimension (N)
*          The n diagonal elements of the tridiagonal matrix T.
*
*  E       (input) DOUBLE PRECISION array, dimension (N-1)
*          The (n-1) subdiagonal elements of the tridiagonal matrix
*          T, stored in elements 1 to N-1.
*
*  M       (input) INTEGER
*          The number of eigenvectors to be found.  0 <= M <= N.
*
*  W       (input) DOUBLE PRECISION array, dimension (N)
*          The first M elements of W contain the eigenvalues for
*          which eigenvectors are to be computed.  The eigenvalues
*          should be grouped by split-off block and ordered from
*          smallest to largest within the block.  ( The output array
*          W from DSTEBZ with ORDER = 'B' is expected here. )
*
*  IBLOCK  (input) INTEGER array, dimension (N)
*          The submatrix indices associated with the corresponding
*          eigenvalues in W; IBLOCK(i)=1 if eigenvalue W(i) belongs to
*          the first submatrix from the top, =2 if W(i) belongs to
*          the second submatrix, etc.  ( The output array IBLOCK
*          from DSTEBZ is expected here. )
*
*  ISPLIT  (input) INTEGER array, dimension (N)
*          The splitting points, at which T breaks up into submatrices.
*          The first submatrix consists of rows/columns 1 to
*          ISPLIT( 1 ), the second of rows/columns ISPLIT( 1 )+1
*          through ISPLIT( 2 ), etc.
*          ( The output array ISPLIT from DSTEBZ is expected here. )
*
*  Z       (output) COMPLEX*16 array, dimension (LDZ, M)
*          The computed eigenvectors.  The eigenvector associated
*          with the eigenvalue W(i) is stored in the i-th column of
*          Z.  Any vector which fails to converge is set to its current
*          iterate after MAXITS iterations.
*          The imaginary parts of the eigenvectors are set to zero.
*
*  LDZ     (input) INTEGER
*          The leading dimension of the array Z.  LDZ >= max(1,N).
*
*  WORK    (workspace) DOUBLE PRECISION array, dimension (5*N)
*
*  IWORK   (workspace) INTEGER array, dimension (N)
*
*  IFAIL   (output) INTEGER array, dimension (M)
*          On normal exit, all elements of IFAIL are zero.
*          If one or more eigenvectors fail to converge after
*          MAXITS iterations, then their indices are stored in
*          array IFAIL.
*
*  INFO    (output) INTEGER
*          = 0: successful exit
*          < 0: if INFO = -i, the i-th argument had an illegal value
*          > 0: if INFO = i, then i eigenvectors failed to converge
*               in MAXITS iterations.  Their indices are stored in
*               array IFAIL.
*
*  Internal Parameters
*  ===================
*
*  MAXITS  INTEGER, default = 5
*          The maximum number of iterations performed.
*
*  EXTRA   INTEGER, default = 2
*          The number of iterations performed after norm growth
*          criterion is satisfied, should be at least 1.
*
* =====================================================================
*
*     .. Parameters ..
      COMPLEX*16         CZERO, CONE
      PARAMETER          ( CZERO = ( 0.0D+00.0D+0 ),
     $                   CONE = ( 1.0D+00.0D+0 ) )
      DOUBLE PRECISION   ZERO, ONE, TEN, ODM3, ODM1
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TEN = 1.0D+1,
     $                   ODM3 = 1.0D-3, ODM1 = 1.0D-1 )
      INTEGER            MAXITS, EXTRA
      PARAMETER          ( MAXITS = 5, EXTRA = 2 )
*     ..
*     .. Local Scalars ..
      INTEGER            B1, BLKSIZ, BN, GPIND, I, IINFO, INDRV1,
     $                   INDRV2, INDRV3, INDRV4, INDRV5, ITS, J, J1,
     $                   JBLK, JMAX, JR, NBLK, NRMCHK
      DOUBLE PRECISION   DTPCRT, EPS, EPS1, NRM, ONENRM, ORTOL, PERTOL,
     $                   SCL, SEP, TOL, XJ, XJM, ZTR
*     ..
*     .. Local Arrays ..
      INTEGER            ISEED( 4 )
*     ..
*     .. External Functions ..
      INTEGER            IDAMAX
      DOUBLE PRECISION   DASUM, DLAMCH, DNRM2
      EXTERNAL           IDAMAX, DASUM, DLAMCH, DNRM2
*     ..
*     .. External Subroutines ..
      EXTERNAL           DCOPY, DLAGTF, DLAGTS, DLARNV, DSCAL, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABSDBLEDCMPLXMAXSQRT
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      DO 10 I = 1, M
         IFAIL( I ) = 0
   10 CONTINUE
*
      IF( N.LT.0 ) THEN
         INFO = -1
      ELSE IF( M.LT.0 .OR. M.GT.N ) THEN
         INFO = -4
      ELSE IF( LDZ.LT.MAX1, N ) ) THEN
         INFO = -9
      ELSE
         DO 20 J = 2, M
            IF( IBLOCK( J ).LT.IBLOCK( J-1 ) ) THEN
               INFO = -6
               GO TO 30
            END IF
            IF( IBLOCK( J ).EQ.IBLOCK( J-1 ) .AND. W( J ).LT.W( J-1 ) )
     $           THEN
               INFO = -5
               GO TO 30
            END IF
   20    CONTINUE
   30    CONTINUE
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'ZSTEIN'-INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 .OR. M.EQ.0 ) THEN
         RETURN
      ELSE IF( N.EQ.1 ) THEN
         Z( 11 ) = CONE
         RETURN
      END IF
*
*     Get machine constants.
*
      EPS = DLAMCH( 'Precision' )
*
*     Initialize seed for random number generator DLARNV.
*
      DO 40 I = 14
         ISEED( I ) = 1
   40 CONTINUE
*
*     Initialize pointers.
*
      INDRV1 = 0
      INDRV2 = INDRV1 + N
      INDRV3 = INDRV2 + N
      INDRV4 = INDRV3 + N
      INDRV5 = INDRV4 + N
*
*     Compute eigenvectors of matrix blocks.
*
      J1 = 1
      DO 180 NBLK = 1, IBLOCK( M )
*
*        Find starting and ending indices of block nblk.
*
         IF( NBLK.EQ.1 ) THEN
            B1 = 1
         ELSE
            B1 = ISPLIT( NBLK-1 ) + 1
         END IF
         BN = ISPLIT( NBLK )
         BLKSIZ = BN - B1 + 1
         IF( BLKSIZ.EQ.1 )
     $      GO TO 60
         GPIND = B1
*
*        Compute reorthogonalization criterion and stopping criterion.
*
         ONENRM = ABS( D( B1 ) ) + ABS( E( B1 ) )
         ONENRM = MAX( ONENRM, ABS( D( BN ) )+ABS( E( BN-1 ) ) )
         DO 50 I = B1 + 1, BN - 1
            ONENRM = MAX( ONENRM, ABS( D( I ) )+ABS( E( I-1 ) )+
     $               ABS( E( I ) ) )
   50    CONTINUE
         ORTOL = ODM3*ONENRM
*
         DTPCRT = SQRT( ODM1 / BLKSIZ )
*
*        Loop through eigenvalues of block nblk.
*
   60    CONTINUE
         JBLK = 0
         DO 170 J = J1, M
            IF( IBLOCK( J ).NE.NBLK ) THEN
               J1 = J
               GO TO 180
            END IF
            JBLK = JBLK + 1
            XJ = W( J )
*
*           Skip all the work if the block size is one.
*
            IF( BLKSIZ.EQ.1 ) THEN
               WORK( INDRV1+1 ) = ONE
               GO TO 140
            END IF
*
*           If eigenvalues j and j-1 are too close, add a relatively
*           small perturbation.
*
            IF( JBLK.GT.1 ) THEN
               EPS1 = ABS( EPS*XJ )
               PERTOL = TEN*EPS1
               SEP = XJ - XJM
               IF( SEP.LT.PERTOL )
     $            XJ = XJM + PERTOL
            END IF
*
            ITS = 0
            NRMCHK = 0
*
*           Get random starting vector.
*
            CALL DLARNV( 2, ISEED, BLKSIZ, WORK( INDRV1+1 ) )
*
*           Copy the matrix T so it won't be destroyed in factorization.
*
            CALL DCOPY( BLKSIZ, D( B1 ), 1, WORK( INDRV4+1 ), 1 )
            CALL DCOPY( BLKSIZ-1, E( B1 ), 1, WORK( INDRV2+2 ), 1 )
            CALL DCOPY( BLKSIZ-1, E( B1 ), 1, WORK( INDRV3+1 ), 1 )
*
*           Compute LU factors with partial pivoting  ( PT = LU )
*
            TOL = ZERO
            CALL DLAGTF( BLKSIZ, WORK( INDRV4+1 ), XJ, WORK( INDRV2+2 ),
     $                   WORK( INDRV3+1 ), TOL, WORK( INDRV5+1 ), IWORK,
     $                   IINFO )
*
*           Update iteration count.
*
   70       CONTINUE
            ITS = ITS + 1
            IF( ITS.GT.MAXITS )
     $         GO TO 120
*
*           Normalize and scale the righthand side vector Pb.
*
            SCL = BLKSIZ*ONENRM*MAX( EPS,
     $            ABS( WORK( INDRV4+BLKSIZ ) ) ) /
     $            DASUM( BLKSIZ, WORK( INDRV1+1 ), 1 )
            CALL DSCAL( BLKSIZ, SCL, WORK( INDRV1+1 ), 1 )
*
*           Solve the system LU = Pb.
*
            CALL DLAGTS( -1, BLKSIZ, WORK( INDRV4+1 ), WORK( INDRV2+2 ),
     $                   WORK( INDRV3+1 ), WORK( INDRV5+1 ), IWORK,
     $                   WORK( INDRV1+1 ), TOL, IINFO )
*
*           Reorthogonalize by modified Gram-Schmidt if eigenvalues are
*           close enough.
*
            IF( JBLK.EQ.1 )
     $         GO TO 110
            IFABS( XJ-XJM ).GT.ORTOL )
     $         GPIND = J
            IF( GPIND.NE.J ) THEN
               DO 100 I = GPIND, J - 1
                  ZTR = ZERO
                  DO 80 JR = 1, BLKSIZ
                     ZTR = ZTR + WORK( INDRV1+JR )*
     $                     DBLE( Z( B1-1+JR, I ) )
   80             CONTINUE
                  DO 90 JR = 1, BLKSIZ
                     WORK( INDRV1+JR ) = WORK( INDRV1+JR ) -
     $                                   ZTR*DBLE( Z( B1-1+JR, I ) )
   90             CONTINUE
  100          CONTINUE
            END IF
*
*           Check the infinity norm of the iterate.
*
  110       CONTINUE
            JMAX = IDAMAX( BLKSIZ, WORK( INDRV1+1 ), 1 )
            NRM = ABS( WORK( INDRV1+JMAX ) )
*
*           Continue for additional iterations after norm reaches
*           stopping criterion.
*
            IF( NRM.LT.DTPCRT )
     $         GO TO 70
            NRMCHK = NRMCHK + 1
            IF( NRMCHK.LT.EXTRA+1 )
     $         GO TO 70
*
            GO TO 130
*
*           If stopping criterion was not satisfied, update info and
*           store eigenvector number in array ifail.
*
  120       CONTINUE
            INFO = INFO + 1
            IFAIL( INFO ) = J
*
*           Accept iterate as jth eigenvector.
*
  130       CONTINUE
            SCL = ONE / DNRM2( BLKSIZ, WORK( INDRV1+1 ), 1 )
            JMAX = IDAMAX( BLKSIZ, WORK( INDRV1+1 ), 1 )
            IF( WORK( INDRV1+JMAX ).LT.ZERO )
     $         SCL = -SCL
            CALL DSCAL( BLKSIZ, SCL, WORK( INDRV1+1 ), 1 )
  140       CONTINUE
            DO 150 I = 1, N
               Z( I, J ) = CZERO
  150       CONTINUE
            DO 160 I = 1, BLKSIZ
               Z( B1+I-1, J ) = DCMPLX( WORK( INDRV1+I ), ZERO )
  160       CONTINUE
*
*           Save the shift to check eigenvalue spacing at next
*           iteration.
*
            XJM = XJ
*
  170    CONTINUE
  180 CONTINUE
*
      RETURN
*
*     End of ZSTEIN
*
      END