1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
     225
     226
     227
     228
     229
     230
     231
     232
     233
     234
     235
     236
     237
     238
     239
     240
     241
     242
     243
     244
     245
     246
     247
     248
     249
     250
     251
     252
     253
     254
     255
     256
     257
     258
     259
     260
     261
     262
     263
     264
     265
     266
     267
     268
     269
     270
     271
     272
     273
     274
     275
     276
     277
     278
     279
     280
     281
     282
     283
     284
     285
     286
     287
     288
     289
     290
     291
     292
     293
     294
     295
     296
     297
     298
     299
     300
     301
     302
      SUBROUTINE ZSYCONV( UPLO, WAY, N, A, LDA, IPIV, WORK, INFO )
*
*  -- LAPACK PROTOTYPE routine (version 3.2.2) --
*
*  -- Written by Julie Langou of the Univ. of TN    --
*     May 2010
*
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO, WAY
      INTEGER            INFO, LDA, N
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * )
      DOUBLE COMPLEX     A( LDA, * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  ZSYCONV converts A given by ZHETRF into L and D or vice-versa.
*  Get nondiagonal elements of D (returned in workspace) and 
*  apply or reverse permutation done in TRF.
*
*  Arguments
*  =========
*
*  UPLO    (input) CHARACTER*1
*          Specifies whether the details of the factorization are stored
*          as an upper or lower triangular matrix.
*          = 'U':  Upper triangular, form is A = U*D*U**T;
*          = 'L':  Lower triangular, form is A = L*D*L**T.

*  WAY     (input) CHARACTER*1
*          = 'C': Convert 
*          = 'R': Revert
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.
*
*  A       (input) DOUBLE COMPLEX array, dimension (LDA,N)
*          The block diagonal matrix D and the multipliers used to
*          obtain the factor U or L as computed by ZSYTRF.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,N).
*
*  IPIV    (input) INTEGER array, dimension (N)
*          Details of the interchanges and the block structure of D
*          as determined by ZSYTRF.
*
* WORK     (workspace) DOUBLE COMPLEX array, dimension (N)
*
* LWORK    (input) INTEGER
*          The length of WORK.  LWORK >=1. 
*          LWORK = N
*
*          If LWORK = -1, then a workspace query is assumed; the routine
*          only calculates the optimal size of the WORK array, returns
*          this value as the first entry of the WORK array, and no error
*          message related to LWORK is issued by XERBLA.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE COMPLEX     ZERO
      PARAMETER          ( ZERO = (0.0D+0,0.0D+0) )
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*
*     .. External Subroutines ..
      EXTERNAL           XERBLA
*     .. Local Scalars ..
      LOGICAL            UPPER, CONVERT
      INTEGER            I, IP, J
      DOUBLE COMPLEX     TEMP
*     ..
*     .. Executable Statements ..
*
      INFO = 0
      UPPER = LSAME( UPLO, 'U' )
      CONVERT = LSAME( WAY, 'C' )
      IF.NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -1
      ELSE IF.NOT.CONVERT .AND. .NOT.LSAME( WAY, 'R' ) ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( LDA.LT.MAX1, N ) ) THEN
         INFO = -5

      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'ZSYCONV'-INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
      IF( UPPER ) THEN
*
*        A is UPPER
*
         IF ( CONVERT ) THEN
*
*           Convert A (A is upper)
*
*           Convert VALUE
*
            I=N
            WORK(1)=ZERO
            DO WHILE ( I .GT. 1 )
               IF( IPIV(I) .LT. 0 ) THEN
                  WORK(I)=A(I-1,I)
                  A(I-1,I)=ZERO
                  I=I-1
               ELSE
                  WORK(I)=ZERO
               ENDIF
               I=I-1
            END DO
*
*           Convert PERMUTATIONS
*  
            I=N
            DO WHILE ( I .GE. 1 )
               IF( IPIV(I) .GT. 0THEN
                  IP=IPIV(I)
                  IF( I .LT. N) THEN
                     DO 12 J= I+1,N
                       TEMP=A(IP,J)
                       A(IP,J)=A(I,J)
                       A(I,J)=TEMP
 12                  CONTINUE
                  ENDIF
               ELSE
                  IP=-IPIV(I)
                  IF( I .LT. N) THEN
                     DO 13 J= I+1,N
                        TEMP=A(IP,J)
                        A(IP,J)=A(I-1,J)
                        A(I-1,J)=TEMP
 13                  CONTINUE
                  ENDIF
                  I=I-1
               ENDIF
               I=I-1
            END DO
*
         ELSE
*
*           Revert A (A is upper)
*
*           Revert PERMUTATIONS
*  
            I=1
            DO WHILE ( I .LE. N )
               IF( IPIV(I) .GT. 0 ) THEN
                  IP=IPIV(I)
                  IF( I .LT. N) THEN
                  DO J= I+1,N
                    TEMP=A(IP,J)
                    A(IP,J)=A(I,J)
                    A(I,J)=TEMP
                  END DO
                  ENDIF
               ELSE
                 IP=-IPIV(I)
                 I=I+1
                 IF( I .LT. N) THEN
                    DO J= I+1,N
                       TEMP=A(IP,J)
                       A(IP,J)=A(I-1,J)
                       A(I-1,J)=TEMP
                    END DO
                 ENDIF
               ENDIF
               I=I+1
            END DO
*
*           Revert VALUE
*
            I=N
            DO WHILE ( I .GT. 1 )
               IF( IPIV(I) .LT. 0 ) THEN
                  A(I-1,I)=WORK(I)
                  I=I-1
               ENDIF
               I=I-1
            END DO
         END IF
*
      ELSE
*
*        A is LOWER
*
         IF ( CONVERT ) THEN
*
*           Convert A (A is lower)
*
*           Convert VALUE
*
            I=1
            WORK(N)=ZERO
            DO WHILE ( I .LE. N )
               IF( I.LT..AND. IPIV(I) .LT. 0 ) THEN
                  WORK(I)=A(I+1,I)
                  A(I+1,I)=ZERO
                  I=I+1
               ELSE
                  WORK(I)=ZERO
               ENDIF
               I=I+1
            END DO
*
*           Convert PERMUTATIONS
*
            I=1
            DO WHILE ( I .LE. N )
               IF( IPIV(I) .GT. 0 ) THEN
                  IP=IPIV(I)
                  IF (I .GT. 1THEN
                     DO 22 J= 1,I-1
                        TEMP=A(IP,J)
                        A(IP,J)=A(I,J)
                        A(I,J)=TEMP
 22                  CONTINUE
                  ENDIF
               ELSE
                  IP=-IPIV(I)
                  IF (I .GT. 1THEN
                     DO 23 J= 1,I-1
                        TEMP=A(IP,J)
                        A(IP,J)=A(I+1,J)
                        A(I+1,J)=TEMP
 23                  CONTINUE
                  ENDIF
                  I=I+1
               ENDIF
               I=I+1
            END DO
*
         ELSE
*
*           Revert A (A is lower)
*
*           Revert PERMUTATIONS
*
            I=N
            DO WHILE ( I .GE. 1 )
               IF( IPIV(I) .GT. 0 ) THEN
                  IP=IPIV(I)
                  IF (I .GT. 1THEN
                     DO J= 1,I-1
                        TEMP=A(I,J)
                        A(I,J)=A(IP,J)
                        A(IP,J)=TEMP
                     END DO
                  ENDIF
               ELSE
                  IP=-IPIV(I)
                  I=I-1
                  IF (I .GT. 1THEN
                     DO J= 1,I-1
                        TEMP=A(I+1,J)
                        A(I+1,J)=A(IP,J)
                        A(IP,J)=TEMP
                     END DO
                  ENDIF
               ENDIF
               I=I-1
            END DO
*
*           Revert VALUE
*
            I=1
            DO WHILE ( I .LE. N-1 )
               IF( IPIV(I) .LT. 0 ) THEN
                  A(I+1,I)=WORK(I)
                  I=I+1
               ENDIF
               I=I+1
            END DO
         END IF
      END IF
*
      RETURN
*
*     End of ZSYCONV
*
      END