1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
     225
     226
     227
     228
     229
     230
     231
     232
     233
     234
     235
     236
     237
     238
     239
     240
     241
     242
     243
     244
     245
     246
     247
     248
     249
     250
     251
     252
     253
     254
     255
     256
     257
     258
     259
     260
     261
     262
     263
     264
     265
     266
     267
     268
     269
     270
     271
     272
     273
     274
     275
     276
     277
     278
     279
     280
     281
     282
     283
     284
     285
     286
     287
     288
     289
     290
     291
     292
     293
     294
     295
     296
     297
     298
     299
     300
     301
     302
     303
     304
     305
     306
     307
     308
     309
     310
     311
     312
     313
     314
     315
     316
     317
     318
     319
     320
     321
     322
     323
     324
     325
     326
     327
     328
     329
     330
     331
     332
     333
     334
     335
     336
     337
     338
     339
     340
     341
     342
     343
     344
     345
     346
     347
     348
     349
     350
     351
     352
     353
     354
     355
     356
     357
     358
     359
     360
     361
     362
     363
     364
     365
     366
     367
     368
     369
     370
     371
     372
     373
     374
     375
     376
     377
     378
     379
     380
     381
     382
     383
     384
     385
     386
     387
     388
     389
     390
     391
     392
     393
     394
     395
     396
     397
     398
     399
     400
     401
     402
     403
     404
     405
     406
     407
     408
     409
     410
     411
     412
     413
     414
     415
     416
     417
     418
     419
     420
     421
     422
     423
     424
     425
     426
     427
     428
     429
     430
     431
     432
     433
     434
     435
     436
     437
     438
     439
     440
     441
     442
     443
     444
     445
     446
     447
     448
     449
     450
     451
     452
     453
     454
     455
     456
     457
     458
     459
     460
     461
     462
     463
     464
     465
     466
     467
     468
     469
     470
     471
     472
     473
     474
     475
     476
     477
     478
     479
     480
     481
     482
     483
     484
     485
     486
     487
     488
     489
     490
     491
     492
     493
     494
     495
     496
     497
     498
     499
     500
     501
     502
     503
     504
     505
     506
     507
     508
     509
     510
     511
     512
     513
     514
     515
     516
     517
     518
     519
     520
     521
     522
     523
     524
     525
     526
     527
     528
     529
     530
     531
     532
     533
     534
     535
     536
     537
     538
     539
     540
     541
     542
     543
     544
     545
     546
     547
     548
     549
     550
     551
     552
     553
     554
     555
     556
     557
     558
     559
     560
     561
     562
     563
     564
     565
     566
     567
     568
     569
     570
     571
     572
     573
     574
     575
      SUBROUTINE ZTGSYL( TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC, D,
     $                   LDD, E, LDE, F, LDF, SCALE, DIF, WORK, LWORK,
     $                   IWORK, INFO )
*
*  -- LAPACK routine (version 3.3.1) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*  -- April 2011                                                      --
*
*     .. Scalar Arguments ..
      CHARACTER          TRANS
      INTEGER            IJOB, INFO, LDA, LDB, LDC, LDD, LDE, LDF,
     $                   LWORK, M, N
      DOUBLE PRECISION   DIF, SCALE
*     ..
*     .. Array Arguments ..
      INTEGER            IWORK( * )
      COMPLEX*16         A( LDA, * ), B( LDB, * ), C( LDC, * ),
     $                   D( LDD, * ), E( LDE, * ), F( LDF, * ),
     $                   WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  ZTGSYL solves the generalized Sylvester equation:
*
*              A * R - L * B = scale * C            (1)
*              D * R - L * E = scale * F
*
*  where R and L are unknown m-by-n matrices, (A, D), (B, E) and
*  (C, F) are given matrix pairs of size m-by-m, n-by-n and m-by-n,
*  respectively, with complex entries. A, B, D and E are upper
*  triangular (i.e., (A,D) and (B,E) in generalized Schur form).
*
*  The solution (R, L) overwrites (C, F). 0 <= SCALE <= 1
*  is an output scaling factor chosen to avoid overflow.
*
*  In matrix notation (1) is equivalent to solve Zx = scale*b, where Z
*  is defined as
*
*         Z = [ kron(In, A)  -kron(B**H, Im) ]        (2)
*             [ kron(In, D)  -kron(E**H, Im) ],
*
*  Here Ix is the identity matrix of size x and X**H is the conjugate
*  transpose of X. Kron(X, Y) is the Kronecker product between the
*  matrices X and Y.
*
*  If TRANS = 'C', y in the conjugate transposed system Z**H *y = scale*b
*  is solved for, which is equivalent to solve for R and L in
*
*              A**H * R + D**H * L = scale * C           (3)
*              R * B**H + L * E**H = scale * -F
*
*  This case (TRANS = 'C') is used to compute an one-norm-based estimate
*  of Dif[(A,D), (B,E)], the separation between the matrix pairs (A,D)
*  and (B,E), using ZLACON.
*
*  If IJOB >= 1, ZTGSYL computes a Frobenius norm-based estimate of
*  Dif[(A,D),(B,E)]. That is, the reciprocal of a lower bound on the
*  reciprocal of the smallest singular value of Z.
*
*  This is a level-3 BLAS algorithm.
*
*  Arguments
*  =========
*
*  TRANS   (input) CHARACTER*1
*          = 'N': solve the generalized sylvester equation (1).
*          = 'C': solve the "conjugate transposed" system (3).
*
*  IJOB    (input) INTEGER
*          Specifies what kind of functionality to be performed.
*          =0: solve (1) only.
*          =1: The functionality of 0 and 3.
*          =2: The functionality of 0 and 4.
*          =3: Only an estimate of Dif[(A,D), (B,E)] is computed.
*              (look ahead strategy is used).
*          =4: Only an estimate of Dif[(A,D), (B,E)] is computed.
*              (ZGECON on sub-systems is used).
*          Not referenced if TRANS = 'C'.
*
*  M       (input) INTEGER
*          The order of the matrices A and D, and the row dimension of
*          the matrices C, F, R and L.
*
*  N       (input) INTEGER
*          The order of the matrices B and E, and the column dimension
*          of the matrices C, F, R and L.
*
*  A       (input) COMPLEX*16 array, dimension (LDA, M)
*          The upper triangular matrix A.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A. LDA >= max(1, M).
*
*  B       (input) COMPLEX*16 array, dimension (LDB, N)
*          The upper triangular matrix B.
*
*  LDB     (input) INTEGER
*          The leading dimension of the array B. LDB >= max(1, N).
*
*  C       (input/output) COMPLEX*16 array, dimension (LDC, N)
*          On entry, C contains the right-hand-side of the first matrix
*          equation in (1) or (3).
*          On exit, if IJOB = 0, 1 or 2, C has been overwritten by
*          the solution R. If IJOB = 3 or 4 and TRANS = 'N', C holds R,
*          the solution achieved during the computation of the
*          Dif-estimate.
*
*  LDC     (input) INTEGER
*          The leading dimension of the array C. LDC >= max(1, M).
*
*  D       (input) COMPLEX*16 array, dimension (LDD, M)
*          The upper triangular matrix D.
*
*  LDD     (input) INTEGER
*          The leading dimension of the array D. LDD >= max(1, M).
*
*  E       (input) COMPLEX*16 array, dimension (LDE, N)
*          The upper triangular matrix E.
*
*  LDE     (input) INTEGER
*          The leading dimension of the array E. LDE >= max(1, N).
*
*  F       (input/output) COMPLEX*16 array, dimension (LDF, N)
*          On entry, F contains the right-hand-side of the second matrix
*          equation in (1) or (3).
*          On exit, if IJOB = 0, 1 or 2, F has been overwritten by
*          the solution L. If IJOB = 3 or 4 and TRANS = 'N', F holds L,
*          the solution achieved during the computation of the
*          Dif-estimate.
*
*  LDF     (input) INTEGER
*          The leading dimension of the array F. LDF >= max(1, M).
*
*  DIF     (output) DOUBLE PRECISION
*          On exit DIF is the reciprocal of a lower bound of the
*          reciprocal of the Dif-function, i.e. DIF is an upper bound of
*          Dif[(A,D), (B,E)] = sigma-min(Z), where Z as in (2).
*          IF IJOB = 0 or TRANS = 'C', DIF is not referenced.
*
*  SCALE   (output) DOUBLE PRECISION
*          On exit SCALE is the scaling factor in (1) or (3).
*          If 0 < SCALE < 1, C and F hold the solutions R and L, resp.,
*          to a slightly perturbed system but the input matrices A, B,
*          D and E have not been changed. If SCALE = 0, R and L will
*          hold the solutions to the homogenious system with C = F = 0.
*
*  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
*  LWORK   (input) INTEGER
*          The dimension of the array WORK. LWORK > = 1.
*          If IJOB = 1 or 2 and TRANS = 'N', LWORK >= max(1,2*M*N).
*
*          If LWORK = -1, then a workspace query is assumed; the routine
*          only calculates the optimal size of the WORK array, returns
*          this value as the first entry of the WORK array, and no error
*          message related to LWORK is issued by XERBLA.
*
*  IWORK   (workspace) INTEGER array, dimension (M+N+2)
*
*  INFO    (output) INTEGER
*            =0: successful exit
*            <0: If INFO = -i, the i-th argument had an illegal value.
*            >0: (A, D) and (B, E) have common or very close
*                eigenvalues.
*
*  Further Details
*  ===============
*
*  Based on contributions by
*     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
*     Umea University, S-901 87 Umea, Sweden.
*
*  [1] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
*      for Solving the Generalized Sylvester Equation and Estimating the
*      Separation between Regular Matrix Pairs, Report UMINF - 93.23,
*      Department of Computing Science, Umea University, S-901 87 Umea,
*      Sweden, December 1993, Revised April 1994, Also as LAPACK Working
*      Note 75.  To appear in ACM Trans. on Math. Software, Vol 22,
*      No 1, 1996.
*
*  [2] B. Kagstrom, A Perturbation Analysis of the Generalized Sylvester
*      Equation (AR - LB, DR - LE ) = (C, F), SIAM J. Matrix Anal.
*      Appl., 15(4):1045-1060, 1994.
*
*  [3] B. Kagstrom and L. Westin, Generalized Schur Methods with
*      Condition Estimators for Solving the Generalized Sylvester
*      Equation, IEEE Transactions on Automatic Control, Vol. 34, No. 7,
*      July 1989, pp 745-751.
*
*  =====================================================================
*  Replaced various illegal calls to CCOPY by calls to CLASET.
*  Sven Hammarling, 1/5/02.
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
      COMPLEX*16         CZERO
      PARAMETER          ( CZERO = (0.0D+00.0D+0) )
*     ..
*     .. Local Scalars ..
      LOGICAL            LQUERY, NOTRAN
      INTEGER            I, IE, IFUNC, IROUND, IS, ISOLVE, J, JE, JS, K,
     $                   LINFO, LWMIN, MB, NB, P, PQ, Q
      DOUBLE PRECISION   DSCALE, DSUM, SCALE2, SCALOC
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ILAENV
      EXTERNAL           LSAME, ILAENV
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA, ZGEMM, ZLACPY, ZLASET, ZSCAL, ZTGSY2
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DBLEDCMPLXMAXSQRT
*     ..
*     .. Executable Statements ..
*
*     Decode and test input parameters
*
      INFO = 0
      NOTRAN = LSAME( TRANS, 'N' )
      LQUERY = ( LWORK.EQ.-1 )
*
      IF.NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN
         INFO = -1
      ELSE IF( NOTRAN ) THEN
         IF( ( IJOB.LT.0 ) .OR. ( IJOB.GT.4 ) ) THEN
            INFO = -2
         END IF
      END IF
      IF( INFO.EQ.0 ) THEN
         IF( M.LE.0 ) THEN
            INFO = -3
         ELSE IF( N.LE.0 ) THEN
            INFO = -4
         ELSE IF( LDA.LT.MAX1, M ) ) THEN
            INFO = -6
         ELSE IF( LDB.LT.MAX1, N ) ) THEN
            INFO = -8
         ELSE IF( LDC.LT.MAX1, M ) ) THEN
            INFO = -10
         ELSE IF( LDD.LT.MAX1, M ) ) THEN
            INFO = -12
         ELSE IF( LDE.LT.MAX1, N ) ) THEN
            INFO = -14
         ELSE IF( LDF.LT.MAX1, M ) ) THEN
            INFO = -16
         END IF
      END IF
*
      IF( INFO.EQ.0 ) THEN
         IF( NOTRAN ) THEN
            IF( IJOB.EQ.1 .OR. IJOB.EQ.2 ) THEN
               LWMIN = MAX12*M*N )
            ELSE
               LWMIN = 1
            END IF
         ELSE
            LWMIN = 1
         END IF
         WORK( 1 ) = LWMIN
*
         IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
            INFO = -20
         END IF
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'ZTGSYL'-INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( M.EQ.0 .OR. N.EQ.0 ) THEN
         SCALE = 1
         IF( NOTRAN ) THEN
            IF( IJOB.NE.0 ) THEN
               DIF = 0
            END IF
         END IF
         RETURN
      END IF
*
*     Determine  optimal block sizes MB and NB
*
      MB = ILAENV( 2'ZTGSYL', TRANS, M, N, -1-1 )
      NB = ILAENV( 5'ZTGSYL', TRANS, M, N, -1-1 )
*
      ISOLVE = 1
      IFUNC = 0
      IF( NOTRAN ) THEN
         IF( IJOB.GE.3 ) THEN
            IFUNC = IJOB - 2
            CALL ZLASET( 'F', M, N, CZERO, CZERO, C, LDC )
            CALL ZLASET( 'F', M, N, CZERO, CZERO, F, LDF )
         ELSE IF( IJOB.GE.1 .AND. NOTRAN ) THEN
            ISOLVE = 2
         END IF
      END IF
*
      IF( ( MB.LE.1 .AND. NB.LE.1 ) .OR. ( MB.GE..AND. NB.GE.N ) )
     $     THEN
*
*        Use unblocked Level 2 solver
*
         DO 30 IROUND = 1, ISOLVE
*
            SCALE = ONE
            DSCALE = ZERO
            DSUM = ONE
            PQ = M*N
            CALL ZTGSY2( TRANS, IFUNC, M, N, A, LDA, B, LDB, C, LDC, D,
     $                   LDD, E, LDE, F, LDF, SCALE, DSUM, DSCALE,
     $                   INFO )
            IF( DSCALE.NE.ZERO ) THEN
               IF( IJOB.EQ.1 .OR. IJOB.EQ.3 ) THEN
                  DIF = SQRTDBLE2*M*N ) ) / ( DSCALE*SQRT( DSUM ) )
               ELSE
                  DIF = SQRTDBLE( PQ ) ) / ( DSCALE*SQRT( DSUM ) )
               END IF
            END IF
            IF( ISOLVE.EQ.2 .AND. IROUND.EQ.1 ) THEN
               IF( NOTRAN ) THEN
                  IFUNC = IJOB
               END IF
               SCALE2 = SCALE
               CALL ZLACPY( 'F', M, N, C, LDC, WORK, M )
               CALL ZLACPY( 'F', M, N, F, LDF, WORK( M*N+1 ), M )
               CALL ZLASET( 'F', M, N, CZERO, CZERO, C, LDC )
               CALL ZLASET( 'F', M, N, CZERO, CZERO, F, LDF )
            ELSE IF( ISOLVE.EQ.2 .AND. IROUND.EQ.2 ) THEN
               CALL ZLACPY( 'F', M, N, WORK, M, C, LDC )
               CALL ZLACPY( 'F', M, N, WORK( M*N+1 ), M, F, LDF )
               SCALE = SCALE2
            END IF
   30    CONTINUE
*
         RETURN
*
      END IF
*
*     Determine block structure of A
*
      P = 0
      I = 1
   40 CONTINUE
      IF( I.GT.M )
     $   GO TO 50
      P = P + 1
      IWORK( P ) = I
      I = I + MB
      IF( I.GE.M )
     $   GO TO 50
      GO TO 40
   50 CONTINUE
      IWORK( P+1 ) = M + 1
      IF( IWORK( P ).EQ.IWORK( P+1 ) )
     $   P = P - 1
*
*     Determine block structure of B
*
      Q = P + 1
      J = 1
   60 CONTINUE
      IF( J.GT.N )
     $   GO TO 70
*
      Q = Q + 1
      IWORK( Q ) = J
      J = J + NB
      IF( J.GE.N )
     $   GO TO 70
      GO TO 60
*
   70 CONTINUE
      IWORK( Q+1 ) = N + 1
      IF( IWORK( Q ).EQ.IWORK( Q+1 ) )
     $   Q = Q - 1
*
      IF( NOTRAN ) THEN
         DO 150 IROUND = 1, ISOLVE
*
*           Solve (I, J) - subsystem
*               A(I, I) * R(I, J) - L(I, J) * B(J, J) = C(I, J)
*               D(I, I) * R(I, J) - L(I, J) * E(J, J) = F(I, J)
*           for I = P, P - 1, ..., 1; J = 1, 2, ..., Q
*
            PQ = 0
            SCALE = ONE
            DSCALE = ZERO
            DSUM = ONE
            DO 130 J = P + 2, Q
               JS = IWORK( J )
               JE = IWORK( J+1 ) - 1
               NB = JE - JS + 1
               DO 120 I = P, 1-1
                  IS = IWORK( I )
                  IE = IWORK( I+1 ) - 1
                  MB = IE - IS + 1
                  CALL ZTGSY2( TRANS, IFUNC, MB, NB, A( IS, IS ), LDA,
     $                         B( JS, JS ), LDB, C( IS, JS ), LDC,
     $                         D( IS, IS ), LDD, E( JS, JS ), LDE,
     $                         F( IS, JS ), LDF, SCALOC, DSUM, DSCALE,
     $                         LINFO )
                  IF( LINFO.GT.0 )
     $               INFO = LINFO
                  PQ = PQ + MB*NB
                  IF( SCALOC.NE.ONE ) THEN
                     DO 80 K = 1, JS - 1
                        CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ),
     $                              C( 1, K ), 1 )
                        CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ),
     $                              F( 1, K ), 1 )
   80                CONTINUE
                     DO 90 K = JS, JE
                        CALL ZSCAL( IS-1DCMPLX( SCALOC, ZERO ),
     $                              C( 1, K ), 1 )
                        CALL ZSCAL( IS-1DCMPLX( SCALOC, ZERO ),
     $                              F( 1, K ), 1 )
   90                CONTINUE
                     DO 100 K = JS, JE
                        CALL ZSCAL( M-IE, DCMPLX( SCALOC, ZERO ),
     $                              C( IE+1, K ), 1 )
                        CALL ZSCAL( M-IE, DCMPLX( SCALOC, ZERO ),
     $                              F( IE+1, K ), 1 )
  100                CONTINUE
                     DO 110 K = JE + 1, N
                        CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ),
     $                              C( 1, K ), 1 )
                        CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ),
     $                              F( 1, K ), 1 )
  110                CONTINUE
                     SCALE = SCALE*SCALOC
                  END IF
*
*                 Substitute R(I,J) and L(I,J) into remaining equation.
*
                  IF( I.GT.1 ) THEN
                     CALL ZGEMM( 'N''N', IS-1, NB, MB,
     $                           DCMPLX-ONE, ZERO ), A( 1, IS ), LDA,
     $                           C( IS, JS ), LDC, DCMPLX( ONE, ZERO ),
     $                           C( 1, JS ), LDC )
                     CALL ZGEMM( 'N''N', IS-1, NB, MB,
     $                           DCMPLX-ONE, ZERO ), D( 1, IS ), LDD,
     $                           C( IS, JS ), LDC, DCMPLX( ONE, ZERO ),
     $                           F( 1, JS ), LDF )
                  END IF
                  IF( J.LT.Q ) THEN
                     CALL ZGEMM( 'N''N', MB, N-JE, NB,
     $                           DCMPLX( ONE, ZERO ), F( IS, JS ), LDF,
     $                           B( JS, JE+1 ), LDB,
     $                           DCMPLX( ONE, ZERO ), C( IS, JE+1 ),
     $                           LDC )
                     CALL ZGEMM( 'N''N', MB, N-JE, NB,
     $                           DCMPLX( ONE, ZERO ), F( IS, JS ), LDF,
     $                           E( JS, JE+1 ), LDE,
     $                           DCMPLX( ONE, ZERO ), F( IS, JE+1 ),
     $                           LDF )
                  END IF
  120          CONTINUE
  130       CONTINUE
            IF( DSCALE.NE.ZERO ) THEN
               IF( IJOB.EQ.1 .OR. IJOB.EQ.3 ) THEN
                  DIF = SQRTDBLE2*M*N ) ) / ( DSCALE*SQRT( DSUM ) )
               ELSE
                  DIF = SQRTDBLE( PQ ) ) / ( DSCALE*SQRT( DSUM ) )
               END IF
            END IF
            IF( ISOLVE.EQ.2 .AND. IROUND.EQ.1 ) THEN
               IF( NOTRAN ) THEN
                  IFUNC = IJOB
               END IF
               SCALE2 = SCALE
               CALL ZLACPY( 'F', M, N, C, LDC, WORK, M )
               CALL ZLACPY( 'F', M, N, F, LDF, WORK( M*N+1 ), M )
               CALL ZLASET( 'F', M, N, CZERO, CZERO, C, LDC )
               CALL ZLASET( 'F', M, N, CZERO, CZERO, F, LDF )
            ELSE IF( ISOLVE.EQ.2 .AND. IROUND.EQ.2 ) THEN
               CALL ZLACPY( 'F', M, N, WORK, M, C, LDC )
               CALL ZLACPY( 'F', M, N, WORK( M*N+1 ), M, F, LDF )
               SCALE = SCALE2
            END IF
  150    CONTINUE
      ELSE
*
*        Solve transposed (I, J)-subsystem
*            A(I, I)**H * R(I, J) + D(I, I)**H * L(I, J) = C(I, J)
*            R(I, J) * B(J, J)  + L(I, J) * E(J, J) = -F(I, J)
*        for I = 1,2,..., P; J = Q, Q-1,..., 1
*
         SCALE = ONE
         DO 210 I = 1, P
            IS = IWORK( I )
            IE = IWORK( I+1 ) - 1
            MB = IE - IS + 1
            DO 200 J = Q, P + 2-1
               JS = IWORK( J )
               JE = IWORK( J+1 ) - 1
               NB = JE - JS + 1
               CALL ZTGSY2( TRANS, IFUNC, MB, NB, A( IS, IS ), LDA,
     $                      B( JS, JS ), LDB, C( IS, JS ), LDC,
     $                      D( IS, IS ), LDD, E( JS, JS ), LDE,
     $                      F( IS, JS ), LDF, SCALOC, DSUM, DSCALE,
     $                      LINFO )
               IF( LINFO.GT.0 )
     $            INFO = LINFO
               IF( SCALOC.NE.ONE ) THEN
                  DO 160 K = 1, JS - 1
                     CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ), C( 1, K ),
     $                           1 )
                     CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ), F( 1, K ),
     $                           1 )
  160             CONTINUE
                  DO 170 K = JS, JE
                     CALL ZSCAL( IS-1DCMPLX( SCALOC, ZERO ),
     $                           C( 1, K ), 1 )
                     CALL ZSCAL( IS-1DCMPLX( SCALOC, ZERO ),
     $                           F( 1, K ), 1 )
  170             CONTINUE
                  DO 180 K = JS, JE
                     CALL ZSCAL( M-IE, DCMPLX( SCALOC, ZERO ),
     $                           C( IE+1, K ), 1 )
                     CALL ZSCAL( M-IE, DCMPLX( SCALOC, ZERO ),
     $                           F( IE+1, K ), 1 )
  180             CONTINUE
                  DO 190 K = JE + 1, N
                     CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ), C( 1, K ),
     $                           1 )
                     CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ), F( 1, K ),
     $                           1 )
  190             CONTINUE
                  SCALE = SCALE*SCALOC
               END IF
*
*              Substitute R(I,J) and L(I,J) into remaining equation.
*
               IF( J.GT.P+2 ) THEN
                  CALL ZGEMM( 'N''C', MB, JS-1, NB,
     $                        DCMPLX( ONE, ZERO ), C( IS, JS ), LDC,
     $                        B( 1, JS ), LDB, DCMPLX( ONE, ZERO ),
     $                        F( IS, 1 ), LDF )
                  CALL ZGEMM( 'N''C', MB, JS-1, NB,
     $                        DCMPLX( ONE, ZERO ), F( IS, JS ), LDF,
     $                        E( 1, JS ), LDE, DCMPLX( ONE, ZERO ),
     $                        F( IS, 1 ), LDF )
               END IF
               IF( I.LT.P ) THEN
                  CALL ZGEMM( 'C''N', M-IE, NB, MB,
     $                        DCMPLX-ONE, ZERO ), A( IS, IE+1 ), LDA,
     $                        C( IS, JS ), LDC, DCMPLX( ONE, ZERO ),
     $                        C( IE+1, JS ), LDC )
                  CALL ZGEMM( 'C''N', M-IE, NB, MB,
     $                        DCMPLX-ONE, ZERO ), D( IS, IE+1 ), LDD,
     $                        F( IS, JS ), LDF, DCMPLX( ONE, ZERO ),
     $                        C( IE+1, JS ), LDC )
               END IF
  200       CONTINUE
  210    CONTINUE
      END IF
*
      WORK( 1 ) = LWMIN
*
      RETURN
*
*     End of ZTGSYL
*
      END