1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
     225
     226
     227
     228
     229
     230
     231
     232
     233
     234
     235
     236
     237
     238
     239
     240
     241
     242
     243
     244
     245
     246
     247
     248
     249
     250
     251
     252
     253
     254
     255
     256
     257
     258
     259
     260
     261
     262
     263
     264
     265
     266
     267
     268
     269
     270
     271
     272
     273
     274
     275
     276
     277
     278
     279
     280
     281
     282
     283
     284
     285
     286
     287
     288
     289
     290
     291
     292
     293
     294
     295
     296
     297
     298
     299
     300
     301
     302
     303
     304
     305
     306
     307
     308
     309
     310
     311
     312
     313
     314
     315
     316
     317
     318
     319
     320
     321
     322
     323
     324
     325
     326
     327
     328
     329
     330
     331
     332
     333
     334
     335
     336
     337
     338
     339
     340
     341
     342
     343
     344
     345
     346
     347
     348
     349
     350
     351
     352
     353
     354
     355
     356
     357
     358
     359
     360
     361
     362
     363
     364
     365
     366
     367
     368
     369
     370
     371
     372
     373
     374
     375
     376
     377
     378
     379
     380
     381
     382
     383
     384
     385
     386
     387
     388
     389
     390
     391
     392
     393
     394
     395
     396
     397
     398
     399
     400
     401
     402
     403
     404
     405
     406
     407
     408
     409
     410
     411
     412
     413
     414
     415
     416
     417
     418
     419
     420
     421
     422
     423
     424
     425
     426
     427
     428
     429
     430
     431
     432
     433
     434
     435
     436
     437
     438
     439
     440
     441
     442
     443
     444
     445
     446
     447
     448
     449
     450
     451
     452
     453
     454
     455
     456
     457
     458
     459
     460
     461
     462
     463
     464
     465
     466
     467
     468
     469
     470
     471
     472
     473
     474
     475
     476
     477
     478
     479
     480
     481
     482
     483
     484
     485
     486
     487
     488
     489
     490
     491
     492
     493
     494
     495
     496
     497
     498
     499
     500
     501
     502
     503
     504
     505
     506
     507
     508
     509
     510
     511
     512
     513
     514
     515
     516
     517
     518
     519
     520
     521
     522
     523
     524
      SUBROUTINE ZUNBDB( TRANS, SIGNS, M, P, Q, X11, LDX11, X12, LDX12,
     $                   X21, LDX21, X22, LDX22, THETA, PHI, TAUP1,
     $                   TAUP2, TAUQ1, TAUQ2, WORK, LWORK, INFO )
      IMPLICIT NONE
*
*  -- LAPACK routine ((version 3.3.0)) --
*
*  -- Contributed by Brian Sutton of the Randolph-Macon College --
*  -- November 2010
*
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--     
*
*     .. Scalar Arguments ..
      CHARACTER          SIGNS, TRANS
      INTEGER            INFO, LDX11, LDX12, LDX21, LDX22, LWORK, M, P,
     $                   Q
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   PHI( * ), THETA( * )
      COMPLEX*16         TAUP1( * ), TAUP2( * ), TAUQ1( * ), TAUQ2( * ),
     $                   WORK( * ), X11( LDX11, * ), X12( LDX12, * ),
     $                   X21( LDX21, * ), X22( LDX22, * )
*     ..
*
*  Purpose
*  =======
*
*  ZUNBDB simultaneously bidiagonalizes the blocks of an M-by-M
*  partitioned unitary matrix X:
*
*                                  [ B11 | B12 0  0 ]
*      [ X11 | X12 ]   [ P1 |    ] [  0  |  0 -I  0 ] [ Q1 |    ]**H
*  X = [-----------] = [---------] [----------------] [---------]   .
*      [ X21 | X22 ]   [    | P2 ] [ B21 | B22 0  0 ] [    | Q2 ]
*                                  [  0  |  0  0  I ]
*
*  X11 is P-by-Q. Q must be no larger than P, M-P, or M-Q. (If this is
*  not the case, then X must be transposed and/or permuted. This can be
*  done in constant time using the TRANS and SIGNS options. See ZUNCSD
*  for details.)
*
*  The unitary matrices P1, P2, Q1, and Q2 are P-by-P, (M-P)-by-
*  (M-P), Q-by-Q, and (M-Q)-by-(M-Q), respectively. They are
*  represented implicitly by Householder vectors.
*
*  B11, B12, B21, and B22 are Q-by-Q bidiagonal matrices represented
*  implicitly by angles THETA, PHI.
*
*  Arguments
*  =========
*
*  TRANS   (input) CHARACTER
*          = 'T':      X, U1, U2, V1T, and V2T are stored in row-major
*                      order;
*          otherwise:  X, U1, U2, V1T, and V2T are stored in column-
*                      major order.
*
*  SIGNS   (input) CHARACTER
*          = 'O':      The lower-left block is made nonpositive (the
*                      "other" convention);
*          otherwise:  The upper-right block is made nonpositive (the
*                      "default" convention).
*
*  M       (input) INTEGER
*          The number of rows and columns in X.
*
*  P       (input) INTEGER
*          The number of rows in X11 and X12. 0 <= P <= M.
*
*  Q       (input) INTEGER
*          The number of columns in X11 and X21. 0 <= Q <=
*          MIN(P,M-P,M-Q).
*
*  X11     (input/output) COMPLEX*16 array, dimension (LDX11,Q)
*          On entry, the top-left block of the unitary matrix to be
*          reduced. On exit, the form depends on TRANS:
*          If TRANS = 'N', then
*             the columns of tril(X11) specify reflectors for P1,
*             the rows of triu(X11,1) specify reflectors for Q1;
*          else TRANS = 'T', and
*             the rows of triu(X11) specify reflectors for P1,
*             the columns of tril(X11,-1) specify reflectors for Q1.
*
*  LDX11   (input) INTEGER
*          The leading dimension of X11. If TRANS = 'N', then LDX11 >=
*          P; else LDX11 >= Q.
*
*  X12     (input/output) COMPLEX*16 array, dimension (LDX12,M-Q)
*          On entry, the top-right block of the unitary matrix to
*          be reduced. On exit, the form depends on TRANS:
*          If TRANS = 'N', then
*             the rows of triu(X12) specify the first P reflectors for
*             Q2;
*          else TRANS = 'T', and
*             the columns of tril(X12) specify the first P reflectors
*             for Q2.
*
*  LDX12   (input) INTEGER
*          The leading dimension of X12. If TRANS = 'N', then LDX12 >=
*          P; else LDX11 >= M-Q.
*
*  X21     (input/output) COMPLEX*16 array, dimension (LDX21,Q)
*          On entry, the bottom-left block of the unitary matrix to
*          be reduced. On exit, the form depends on TRANS:
*          If TRANS = 'N', then
*             the columns of tril(X21) specify reflectors for P2;
*          else TRANS = 'T', and
*             the rows of triu(X21) specify reflectors for P2.
*
*  LDX21   (input) INTEGER
*          The leading dimension of X21. If TRANS = 'N', then LDX21 >=
*          M-P; else LDX21 >= Q.
*
*  X22     (input/output) COMPLEX*16 array, dimension (LDX22,M-Q)
*          On entry, the bottom-right block of the unitary matrix to
*          be reduced. On exit, the form depends on TRANS:
*          If TRANS = 'N', then
*             the rows of triu(X22(Q+1:M-P,P+1:M-Q)) specify the last
*             M-P-Q reflectors for Q2,
*          else TRANS = 'T', and
*             the columns of tril(X22(P+1:M-Q,Q+1:M-P)) specify the last
*             M-P-Q reflectors for P2.
*
*  LDX22   (input) INTEGER
*          The leading dimension of X22. If TRANS = 'N', then LDX22 >=
*          M-P; else LDX22 >= M-Q.
*
*  THETA   (output) DOUBLE PRECISION array, dimension (Q)
*          The entries of the bidiagonal blocks B11, B12, B21, B22 can
*          be computed from the angles THETA and PHI. See Further
*          Details.
*
*  PHI     (output) DOUBLE PRECISION array, dimension (Q-1)
*          The entries of the bidiagonal blocks B11, B12, B21, B22 can
*          be computed from the angles THETA and PHI. See Further
*          Details.
*
*  TAUP1   (output) COMPLEX*16 array, dimension (P)
*          The scalar factors of the elementary reflectors that define
*          P1.
*
*  TAUP2   (output) COMPLEX*16 array, dimension (M-P)
*          The scalar factors of the elementary reflectors that define
*          P2.
*
*  TAUQ1   (output) COMPLEX*16 array, dimension (Q)
*          The scalar factors of the elementary reflectors that define
*          Q1.
*
*  TAUQ2   (output) COMPLEX*16 array, dimension (M-Q)
*          The scalar factors of the elementary reflectors that define
*          Q2.
*
*  WORK    (workspace) COMPLEX*16 array, dimension (LWORK)
*
*  LWORK   (input) INTEGER
*          The dimension of the array WORK. LWORK >= M-Q.
*
*          If LWORK = -1, then a workspace query is assumed; the routine
*          only calculates the optimal size of the WORK array, returns
*          this value as the first entry of the WORK array, and no error
*          message related to LWORK is issued by XERBLA.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit.
*          < 0:  if INFO = -i, the i-th argument had an illegal value.
*
*  Further Details
*  ===============
*
*  The bidiagonal blocks B11, B12, B21, and B22 are represented
*  implicitly by angles THETA(1), ..., THETA(Q) and PHI(1), ...,
*  PHI(Q-1). B11 and B21 are upper bidiagonal, while B21 and B22 are
*  lower bidiagonal. Every entry in each bidiagonal band is a product
*  of a sine or cosine of a THETA with a sine or cosine of a PHI. See
*  [1] or ZUNCSD for details.
*
*  P1, P2, Q1, and Q2 are represented as products of elementary
*  reflectors. See ZUNCSD for details on generating P1, P2, Q1, and Q2
*  using ZUNGQR and ZUNGLQ.
*
*  Reference
*  =========
*
*  [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
*      Algorithms, 50(1):33-65, 2009.
*
*  ====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   REALONE
      PARAMETER          ( REALONE = 1.0D0 )
      COMPLEX*16         NEGONE, ONE
      PARAMETER          ( NEGONE = (-1.0D0,0.0D0),
     $                     ONE = (1.0D0,0.0D0) )
*     ..
*     .. Local Scalars ..
      LOGICAL            COLMAJOR, LQUERY
      INTEGER            I, LWORKMIN, LWORKOPT
      DOUBLE PRECISION   Z1, Z2, Z3, Z4
*     ..
*     .. External Subroutines ..
      EXTERNAL           ZAXPY, ZLARF, ZLARFGP, ZSCAL, XERBLA
      EXTERNAL           ZLACGV
*
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DZNRM2
      LOGICAL            LSAME
      EXTERNAL           DZNRM2, LSAME
*     ..
*     .. Intrinsic Functions
      INTRINSIC          ATAN2COSMAXMINSIN
      INTRINSIC          DCMPLXDCONJG
*     ..
*     .. Executable Statements ..
*
*     Test input arguments
*
      INFO = 0
      COLMAJOR = .NOT. LSAME( TRANS, 'T' )
      IF.NOT. LSAME( SIGNS, 'O' ) ) THEN
         Z1 = REALONE
         Z2 = REALONE
         Z3 = REALONE
         Z4 = REALONE
      ELSE
         Z1 = REALONE
         Z2 = -REALONE
         Z3 = REALONE
         Z4 = -REALONE
      END IF
      LQUERY = LWORK .EQ. -1
*
      IF( M .LT. 0 ) THEN
         INFO = -3
      ELSE IF( P .LT. 0 .OR. P .GT. M ) THEN
         INFO = -4
      ELSE IF( Q .LT. 0 .OR. Q .GT. P .OR. Q .GT. M-.OR.
     $         Q .GT. M-Q ) THEN
         INFO = -5
      ELSE IF( COLMAJOR .AND. LDX11 .LT. MAX1, P ) ) THEN
         INFO = -7
      ELSE IF.NOT.COLMAJOR .AND. LDX11 .LT. MAX1, Q ) ) THEN
         INFO = -7
      ELSE IF( COLMAJOR .AND. LDX12 .LT. MAX1, P ) ) THEN
         INFO = -9
      ELSE IF.NOT.COLMAJOR .AND. LDX12 .LT. MAX1, M-Q ) ) THEN
         INFO = -9
      ELSE IF( COLMAJOR .AND. LDX21 .LT. MAX1, M-P ) ) THEN
         INFO = -11
      ELSE IF.NOT.COLMAJOR .AND. LDX21 .LT. MAX1, Q ) ) THEN
         INFO = -11
      ELSE IF( COLMAJOR .AND. LDX22 .LT. MAX1, M-P ) ) THEN
         INFO = -13
      ELSE IF.NOT.COLMAJOR .AND. LDX22 .LT. MAX1, M-Q ) ) THEN
         INFO = -13
      END IF
*
*     Compute workspace
*
      IF( INFO .EQ. 0 ) THEN
         LWORKOPT = M - Q
         LWORKMIN = M - Q
         WORK(1= LWORKOPT
         IF( LWORK .LT. LWORKMIN .AND. .NOT. LQUERY ) THEN
            INFO = -21
         END IF
      END IF
      IF( INFO .NE. 0 ) THEN
         CALL XERBLA( 'xORBDB'-INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
*
*     Handle column-major and row-major separately
*
      IF( COLMAJOR ) THEN
*
*        Reduce columns 1, ..., Q of X11, X12, X21, and X22 
*
         DO I = 1, Q
*
            IF( I .EQ. 1 ) THEN
               CALL ZSCAL( P-I+1DCMPLX( Z1, 0.0D0 ), X11(I,I), 1 )
            ELSE
               CALL ZSCAL( P-I+1DCMPLX( Z1*COS(PHI(I-1)), 0.0D0 ),
     $                     X11(I,I), 1 )
               CALL ZAXPY( P-I+1DCMPLX-Z1*Z3*Z4*SIN(PHI(I-1)),
     $                     0.0D0 ), X12(I,I-1), 1, X11(I,I), 1 )
            END IF
            IF( I .EQ. 1 ) THEN
               CALL ZSCAL( M-P-I+1DCMPLX( Z2, 0.0D0 ), X21(I,I), 1 )
            ELSE
               CALL ZSCAL( M-P-I+1DCMPLX( Z2*COS(PHI(I-1)), 0.0D0 ),
     $                     X21(I,I), 1 )
               CALL ZAXPY( M-P-I+1DCMPLX-Z2*Z3*Z4*SIN(PHI(I-1)),
     $                     0.0D0 ), X22(I,I-1), 1, X21(I,I), 1 )
            END IF
*
            THETA(I) = ATAN2( DZNRM2( M-P-I+1, X21(I,I), 1 ),
     $                 DZNRM2( P-I+1, X11(I,I), 1 ) )
*
            CALL ZLARFGP( P-I+1, X11(I,I), X11(I+1,I), 1, TAUP1(I) )
            X11(I,I) = ONE
            CALL ZLARFGP( M-P-I+1, X21(I,I), X21(I+1,I), 1, TAUP2(I) )
            X21(I,I) = ONE
*
            CALL ZLARF( 'L', P-I+1, Q-I, X11(I,I), 1DCONJG(TAUP1(I)),
     $                  X11(I,I+1), LDX11, WORK )
            CALL ZLARF( 'L', P-I+1, M-Q-I+1, X11(I,I), 1,
     $                  DCONJG(TAUP1(I)), X12(I,I), LDX12, WORK )
            CALL ZLARF( 'L', M-P-I+1, Q-I, X21(I,I), 1,
     $                  DCONJG(TAUP2(I)), X21(I,I+1), LDX21, WORK )
            CALL ZLARF( 'L', M-P-I+1, M-Q-I+1, X21(I,I), 1,
     $                  DCONJG(TAUP2(I)), X22(I,I), LDX22, WORK )
*
            IF( I .LT. Q ) THEN
               CALL ZSCAL( Q-I, DCMPLX-Z1*Z3*SIN(THETA(I)), 0.0D0 ),
     $                     X11(I,I+1), LDX11 )
               CALL ZAXPY( Q-I, DCMPLX( Z2*Z3*COS(THETA(I)), 0.0D0 ),
     $                     X21(I,I+1), LDX21, X11(I,I+1), LDX11 )
            END IF
            CALL ZSCAL( M-Q-I+1DCMPLX-Z1*Z4*SIN(THETA(I)), 0.0D0 ),
     $                  X12(I,I), LDX12 )
            CALL ZAXPY( M-Q-I+1DCMPLX( Z2*Z4*COS(THETA(I)), 0.0D0 ),
     $                  X22(I,I), LDX22, X12(I,I), LDX12 )
*
            IF( I .LT. Q )
     $         PHI(I) = ATAN2( DZNRM2( Q-I, X11(I,I+1), LDX11 ),
     $                  DZNRM2( M-Q-I+1, X12(I,I), LDX12 ) )
*
            IF( I .LT. Q ) THEN
               CALL ZLACGV( Q-I, X11(I,I+1), LDX11 )
               CALL ZLARFGP( Q-I, X11(I,I+1), X11(I,I+2), LDX11,
     $                       TAUQ1(I) )
               X11(I,I+1= ONE
            END IF
            CALL ZLACGV( M-Q-I+1, X12(I,I), LDX12 )
            CALL ZLARFGP( M-Q-I+1, X12(I,I), X12(I,I+1), LDX12,
     $                    TAUQ2(I) )
            X12(I,I) = ONE
*
            IF( I .LT. Q ) THEN
               CALL ZLARF( 'R', P-I, Q-I, X11(I,I+1), LDX11, TAUQ1(I),
     $                     X11(I+1,I+1), LDX11, WORK )
               CALL ZLARF( 'R', M-P-I, Q-I, X11(I,I+1), LDX11, TAUQ1(I),
     $                     X21(I+1,I+1), LDX21, WORK )
            END IF
            CALL ZLARF( 'R', P-I, M-Q-I+1, X12(I,I), LDX12, TAUQ2(I),
     $                  X12(I+1,I), LDX12, WORK )
            CALL ZLARF( 'R', M-P-I, M-Q-I+1, X12(I,I), LDX12, TAUQ2(I),
     $                  X22(I+1,I), LDX22, WORK )
*
            IF( I .LT. Q )
     $         CALL ZLACGV( Q-I, X11(I,I+1), LDX11 )
            CALL ZLACGV( M-Q-I+1, X12(I,I), LDX12 )
*
         END DO
*
*        Reduce columns Q + 1, ..., P of X12, X22
*
         DO I = Q + 1, P
*
            CALL ZSCAL( M-Q-I+1DCMPLX-Z1*Z4, 0.0D0 ), X12(I,I),
     $                  LDX12 )
            CALL ZLACGV( M-Q-I+1, X12(I,I), LDX12 )
            CALL ZLARFGP( M-Q-I+1, X12(I,I), X12(I,I+1), LDX12,
     $                    TAUQ2(I) )
            X12(I,I) = ONE
*
            CALL ZLARF( 'R', P-I, M-Q-I+1, X12(I,I), LDX12, TAUQ2(I),
     $                  X12(I+1,I), LDX12, WORK )
            IF( M-P-.GE. 1 )
     $         CALL ZLARF( 'R', M-P-Q, M-Q-I+1, X12(I,I), LDX12,
     $                     TAUQ2(I), X22(Q+1,I), LDX22, WORK )
*
            CALL ZLACGV( M-Q-I+1, X12(I,I), LDX12 )
*
         END DO
*
*        Reduce columns P + 1, ..., M - Q of X12, X22
*
         DO I = 1, M - P - Q
*
            CALL ZSCAL( M-P-Q-I+1DCMPLX( Z2*Z4, 0.0D0 ),
     $                  X22(Q+I,P+I), LDX22 )
            CALL ZLACGV( M-P-Q-I+1, X22(Q+I,P+I), LDX22 )
            CALL ZLARFGP( M-P-Q-I+1, X22(Q+I,P+I), X22(Q+I,P+I+1),
     $                    LDX22, TAUQ2(P+I) )
            X22(Q+I,P+I) = ONE
            CALL ZLARF( 'R', M-P-Q-I, M-P-Q-I+1, X22(Q+I,P+I), LDX22,
     $                  TAUQ2(P+I), X22(Q+I+1,P+I), LDX22, WORK )
*
            CALL ZLACGV( M-P-Q-I+1, X22(Q+I,P+I), LDX22 )
*
         END DO
*
      ELSE
*
*        Reduce columns 1, ..., Q of X11, X12, X21, X22
*
         DO I = 1, Q
*
            IF( I .EQ. 1 ) THEN
               CALL ZSCAL( P-I+1DCMPLX( Z1, 0.0D0 ), X11(I,I),
     $                     LDX11 )
            ELSE
               CALL ZSCAL( P-I+1DCMPLX( Z1*COS(PHI(I-1)), 0.0D0 ),
     $                     X11(I,I), LDX11 )
               CALL ZAXPY( P-I+1DCMPLX-Z1*Z3*Z4*SIN(PHI(I-1)),
     $                     0.0D0 ), X12(I-1,I), LDX12, X11(I,I), LDX11 )
            END IF
            IF( I .EQ. 1 ) THEN
               CALL ZSCAL( M-P-I+1DCMPLX( Z2, 0.0D0 ), X21(I,I),
     $                     LDX21 )
            ELSE
               CALL ZSCAL( M-P-I+1DCMPLX( Z2*COS(PHI(I-1)), 0.0D0 ),
     $                     X21(I,I), LDX21 )
               CALL ZAXPY( M-P-I+1DCMPLX-Z2*Z3*Z4*SIN(PHI(I-1)),
     $                     0.0D0 ), X22(I-1,I), LDX22, X21(I,I), LDX21 )
            END IF
*
            THETA(I) = ATAN2( DZNRM2( M-P-I+1, X21(I,I), LDX21 ),
     $                 DZNRM2( P-I+1, X11(I,I), LDX11 ) )
*
            CALL ZLACGV( P-I+1, X11(I,I), LDX11 )
            CALL ZLACGV( M-P-I+1, X21(I,I), LDX21 )
*
            CALL ZLARFGP( P-I+1, X11(I,I), X11(I,I+1), LDX11, TAUP1(I) )
            X11(I,I) = ONE
            CALL ZLARFGP( M-P-I+1, X21(I,I), X21(I,I+1), LDX21,
     $                    TAUP2(I) )
            X21(I,I) = ONE
*
            CALL ZLARF( 'R', Q-I, P-I+1, X11(I,I), LDX11, TAUP1(I),
     $                  X11(I+1,I), LDX11, WORK )
            CALL ZLARF( 'R', M-Q-I+1, P-I+1, X11(I,I), LDX11, TAUP1(I),
     $                  X12(I,I), LDX12, WORK )
            CALL ZLARF( 'R', Q-I, M-P-I+1, X21(I,I), LDX21, TAUP2(I),
     $                  X21(I+1,I), LDX21, WORK )
            CALL ZLARF( 'R', M-Q-I+1, M-P-I+1, X21(I,I), LDX21,
     $                  TAUP2(I), X22(I,I), LDX22, WORK )
*
            CALL ZLACGV( P-I+1, X11(I,I), LDX11 )
            CALL ZLACGV( M-P-I+1, X21(I,I), LDX21 )
*
            IF( I .LT. Q ) THEN
               CALL ZSCAL( Q-I, DCMPLX-Z1*Z3*SIN(THETA(I)), 0.0D0 ),
     $                     X11(I+1,I), 1 )
               CALL ZAXPY( Q-I, DCMPLX( Z2*Z3*COS(THETA(I)), 0.0D0 ),
     $                     X21(I+1,I), 1, X11(I+1,I), 1 )
            END IF
            CALL ZSCAL( M-Q-I+1DCMPLX-Z1*Z4*SIN(THETA(I)), 0.0D0 ),
     $                  X12(I,I), 1 )
            CALL ZAXPY( M-Q-I+1DCMPLX( Z2*Z4*COS(THETA(I)), 0.0D0 ),
     $                  X22(I,I), 1, X12(I,I), 1 )
*
            IF( I .LT. Q )
     $         PHI(I) = ATAN2( DZNRM2( Q-I, X11(I+1,I), 1 ),
     $                  DZNRM2( M-Q-I+1, X12(I,I), 1 ) )
*
            IF( I .LT. Q ) THEN
               CALL ZLARFGP( Q-I, X11(I+1,I), X11(I+2,I), 1, TAUQ1(I) )
               X11(I+1,I) = ONE
            END IF
            CALL ZLARFGP( M-Q-I+1, X12(I,I), X12(I+1,I), 1, TAUQ2(I) )
            X12(I,I) = ONE
*
            IF( I .LT. Q ) THEN
               CALL ZLARF( 'L', Q-I, P-I, X11(I+1,I), 1,
     $                     DCONJG(TAUQ1(I)), X11(I+1,I+1), LDX11, WORK )
               CALL ZLARF( 'L', Q-I, M-P-I, X11(I+1,I), 1,
     $                     DCONJG(TAUQ1(I)), X21(I+1,I+1), LDX21, WORK )
            END IF
            CALL ZLARF( 'L', M-Q-I+1, P-I, X12(I,I), 1,
     $                  DCONJG(TAUQ2(I)), X12(I,I+1), LDX12, WORK )
            CALL ZLARF( 'L', M-Q-I+1, M-P-I, X12(I,I), 1,
     $                  DCONJG(TAUQ2(I)), X22(I,I+1), LDX22, WORK )
*
         END DO
*
*        Reduce columns Q + 1, ..., P of X12, X22
*
         DO I = Q + 1, P
*
            CALL ZSCAL( M-Q-I+1DCMPLX-Z1*Z4, 0.0D0 ), X12(I,I), 1 )
            CALL ZLARFGP( M-Q-I+1, X12(I,I), X12(I+1,I), 1, TAUQ2(I) )
            X12(I,I) = ONE
*
            CALL ZLARF( 'L', M-Q-I+1, P-I, X12(I,I), 1,
     $                  DCONJG(TAUQ2(I)), X12(I,I+1), LDX12, WORK )
            IF( M-P-.GE. 1 )
     $         CALL ZLARF( 'L', M-Q-I+1, M-P-Q, X12(I,I), 1,
     $                     DCONJG(TAUQ2(I)), X22(I,Q+1), LDX22, WORK )
*
         END DO
*
*        Reduce columns P + 1, ..., M - Q of X12, X22
*
         DO I = 1, M - P - Q
*
            CALL ZSCAL( M-P-Q-I+1DCMPLX( Z2*Z4, 0.0D0 ),
     $                  X22(P+I,Q+I), 1 )
            CALL ZLARFGP( M-P-Q-I+1, X22(P+I,Q+I), X22(P+I+1,Q+I), 1,
     $                    TAUQ2(P+I) )
            X22(P+I,Q+I) = ONE
*
            CALL ZLARF( 'L', M-P-Q-I+1, M-P-Q-I, X22(P+I,Q+I), 1,
     $                  DCONJG(TAUQ2(P+I)), X22(P+I,Q+I+1), LDX22,
     $                  WORK )
*
         END DO
*
      END IF
*
      RETURN
*
*     End of ZUNBDB
*
      END