1 
  2 
  3 
  4 
  5 
  6 
  7 
  8 
  9 
 10 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 31 
 32 
 33 
 34 
 35 
 36 
 37 
 38 
 39 
 40 
 41 
 42 
 43 
 44 
 45 
 46 
 47 
 48 
 49 
 50 
 51 
 52 
 53 
 54 
 55 
 56 
 57 
 58 
 59 
 60 
 61 
 62 
 63 
 64 
 65 
 66 
 67 
 68 
 69 
 70 
 71 
 72 
 73 
 74 
 75 
 76 
 77 
 78 
 79 
 80 
 81 
 82 
 83 
 84 
 85 
 86 
 87 
 88 
 89 
 90 
 91 
 92 
 93 
 94 
 95 
 96 
 97 
 98 
 99 
100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
201 
202 
203 
204 
205 
206 
207 
208 
209 
210 
211 
212 
213 
214 
215 
216 
217 
 
 | 
 
      SUBROUTINE ZUNGQR( M, N, K, A, LDA, TAU, WORK, LWORK, INFO ) 
* 
*  -- LAPACK routine (version 3.2) -- 
*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- 
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 
*     November 2006 
* 
*     .. Scalar Arguments .. 
      INTEGER            INFO, K, LDA, LWORK, M, N 
*     .. 
*     .. Array Arguments .. 
      COMPLEX*16         A( LDA, * ), TAU( * ), WORK( * ) 
*     .. 
* 
*  Purpose 
*  ======= 
* 
*  ZUNGQR generates an M-by-N complex matrix Q with orthonormal columns, 
*  which is defined as the first N columns of a product of K elementary 
*  reflectors of order M 
* 
*        Q  =  H(1) H(2) . . . H(k) 
* 
*  as returned by ZGEQRF. 
* 
*  Arguments 
*  ========= 
* 
*  M       (input) INTEGER 
*          The number of rows of the matrix Q. M >= 0. 
* 
*  N       (input) INTEGER 
*          The number of columns of the matrix Q. M >= N >= 0. 
* 
*  K       (input) INTEGER 
*          The number of elementary reflectors whose product defines the 
*          matrix Q. N >= K >= 0. 
* 
*  A       (input/output) COMPLEX*16 array, dimension (LDA,N) 
*          On entry, the i-th column must contain the vector which 
*          defines the elementary reflector H(i), for i = 1,2,...,k, as 
*          returned by ZGEQRF in the first k columns of its array 
*          argument A. 
*          On exit, the M-by-N matrix Q. 
* 
*  LDA     (input) INTEGER 
*          The first dimension of the array A. LDA >= max(1,M). 
* 
*  TAU     (input) COMPLEX*16 array, dimension (K) 
*          TAU(i) must contain the scalar factor of the elementary 
*          reflector H(i), as returned by ZGEQRF. 
* 
*  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK)) 
*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. 
* 
*  LWORK   (input) INTEGER 
*          The dimension of the array WORK. LWORK >= max(1,N). 
*          For optimum performance LWORK >= N*NB, where NB is the 
*          optimal blocksize. 
* 
*          If LWORK = -1, then a workspace query is assumed; the routine 
*          only calculates the optimal size of the WORK array, returns 
*          this value as the first entry of the WORK array, and no error 
*          message related to LWORK is issued by XERBLA. 
* 
*  INFO    (output) INTEGER 
*          = 0:  successful exit 
*          < 0:  if INFO = -i, the i-th argument has an illegal value 
* 
*  ===================================================================== 
* 
*     .. Parameters .. 
      COMPLEX*16         ZERO 
      PARAMETER          ( ZERO = ( 0.0D+0, 0.0D+0 ) ) 
*     .. 
*     .. Local Scalars .. 
      LOGICAL            LQUERY 
      INTEGER            I, IB, IINFO, IWS, J, KI, KK, L, LDWORK, 
     $                   LWKOPT, NB, NBMIN, NX 
*     .. 
*     .. External Subroutines .. 
      EXTERNAL           XERBLA, ZLARFB, ZLARFT, ZUNG2R 
*     .. 
*     .. Intrinsic Functions .. 
      INTRINSIC          MAX, MIN 
*     .. 
*     .. External Functions .. 
      INTEGER            ILAENV 
      EXTERNAL           ILAENV 
*     .. 
*     .. Executable Statements .. 
* 
*     Test the input arguments 
* 
      INFO = 0 
      NB = ILAENV( 1, 'ZUNGQR', ' ', M, N, K, -1 ) 
      LWKOPT = MAX( 1, N )*NB 
      WORK( 1 ) = LWKOPT 
      LQUERY = ( LWORK.EQ.-1 ) 
      IF( M.LT.0 ) THEN 
         INFO = -1 
      ELSE IF( N.LT.0 .OR. N.GT.M ) THEN 
         INFO = -2 
      ELSE IF( K.LT.0 .OR. K.GT.N ) THEN 
         INFO = -3 
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN 
         INFO = -5 
      ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN 
         INFO = -8 
      END IF 
      IF( INFO.NE.0 ) THEN 
         CALL XERBLA( 'ZUNGQR', -INFO ) 
         RETURN 
      ELSE IF( LQUERY ) THEN 
         RETURN 
      END IF 
* 
*     Quick return if possible 
* 
      IF( N.LE.0 ) THEN 
         WORK( 1 ) = 1 
         RETURN 
      END IF 
* 
      NBMIN = 2 
      NX = 0 
      IWS = N 
      IF( NB.GT.1 .AND. NB.LT.K ) THEN 
* 
*        Determine when to cross over from blocked to unblocked code. 
* 
         NX = MAX( 0, ILAENV( 3, 'ZUNGQR', ' ', M, N, K, -1 ) ) 
         IF( NX.LT.K ) THEN 
* 
*           Determine if workspace is large enough for blocked code. 
* 
            LDWORK = N 
            IWS = LDWORK*NB 
            IF( LWORK.LT.IWS ) THEN 
* 
*              Not enough workspace to use optimal NB:  reduce NB and 
*              determine the minimum value of NB. 
* 
               NB = LWORK / LDWORK 
               NBMIN = MAX( 2, ILAENV( 2, 'ZUNGQR', ' ', M, N, K, -1 ) ) 
            END IF 
         END IF 
      END IF 
* 
      IF( NB.GE.NBMIN .AND. NB.LT.K .AND. NX.LT.K ) THEN 
* 
*        Use blocked code after the last block. 
*        The first kk columns are handled by the block method. 
* 
         KI = ( ( K-NX-1 ) / NB )*NB 
         KK = MIN( K, KI+NB ) 
* 
*        Set A(1:kk,kk+1:n) to zero. 
* 
         DO 20 J = KK + 1, N 
            DO 10 I = 1, KK 
               A( I, J ) = ZERO 
   10       CONTINUE 
   20    CONTINUE 
      ELSE 
         KK = 0 
      END IF 
* 
*     Use unblocked code for the last or only block. 
* 
      IF( KK.LT.N ) 
     $   CALL ZUNG2R( M-KK, N-KK, K-KK, A( KK+1, KK+1 ), LDA, 
     $                TAU( KK+1 ), WORK, IINFO ) 
* 
      IF( KK.GT.0 ) THEN 
* 
*        Use blocked code 
* 
         DO 50 I = KI + 1, 1, -NB 
            IB = MIN( NB, K-I+1 ) 
            IF( I+IB.LE.N ) THEN 
* 
*              Form the triangular factor of the block reflector 
*              H = H(i) H(i+1) . . . H(i+ib-1) 
* 
               CALL ZLARFT( 'Forward', 'Columnwise', M-I+1, IB, 
     $                      A( I, I ), LDA, TAU( I ), WORK, LDWORK ) 
* 
*              Apply H to A(i:m,i+ib:n) from the left 
* 
               CALL ZLARFB( 'Left', 'No transpose', 'Forward', 
     $                      'Columnwise', M-I+1, N-I-IB+1, IB, 
     $                      A( I, I ), LDA, WORK, LDWORK, A( I, I+IB ), 
     $                      LDA, WORK( IB+1 ), LDWORK ) 
            END IF 
* 
*           Apply H to rows i:m of current block 
* 
            CALL ZUNG2R( M-I+1, IB, IB, A( I, I ), LDA, TAU( I ), WORK, 
     $                   IINFO ) 
* 
*           Set rows 1:i-1 of current block to zero 
* 
            DO 40 J = I, I + IB - 1 
               DO 30 L = 1, I - 1 
                  A( L, J ) = ZERO 
   30          CONTINUE 
   40       CONTINUE 
   50    CONTINUE 
      END IF 
* 
      WORK( 1 ) = IWS 
      RETURN 
* 
*     End of ZUNGQR 
* 
      END 
 
 |