1       SUBROUTINE DSPGV( ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK,
  2      $                  INFO )
  3 *
  4 *  -- LAPACK driver routine (version 3.3.1) --
  5 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  6 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  7 *  -- April 2011                                                      --
  8 *
  9 *     .. Scalar Arguments ..
 10       CHARACTER          JOBZ, UPLO
 11       INTEGER            INFO, ITYPE, LDZ, N
 12 *     ..
 13 *     .. Array Arguments ..
 14       DOUBLE PRECISION   AP( * ), BP( * ), W( * ), WORK( * ),
 15      $                   Z( LDZ, * )
 16 *     ..
 17 *
 18 *  Purpose
 19 *  =======
 20 *
 21 *  DSPGV computes all the eigenvalues and, optionally, the eigenvectors
 22 *  of a real generalized symmetric-definite eigenproblem, of the form
 23 *  A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.
 24 *  Here A and B are assumed to be symmetric, stored in packed format,
 25 *  and B is also positive definite.
 26 *
 27 *  Arguments
 28 *  =========
 29 *
 30 *  ITYPE   (input) INTEGER
 31 *          Specifies the problem type to be solved:
 32 *          = 1:  A*x = (lambda)*B*x
 33 *          = 2:  A*B*x = (lambda)*x
 34 *          = 3:  B*A*x = (lambda)*x
 35 *
 36 *  JOBZ    (input) CHARACTER*1
 37 *          = 'N':  Compute eigenvalues only;
 38 *          = 'V':  Compute eigenvalues and eigenvectors.
 39 *
 40 *  UPLO    (input) CHARACTER*1
 41 *          = 'U':  Upper triangles of A and B are stored;
 42 *          = 'L':  Lower triangles of A and B are stored.
 43 *
 44 *  N       (input) INTEGER
 45 *          The order of the matrices A and B.  N >= 0.
 46 *
 47 *  AP      (input/output) DOUBLE PRECISION array, dimension
 48 *                            (N*(N+1)/2)
 49 *          On entry, the upper or lower triangle of the symmetric matrix
 50 *          A, packed columnwise in a linear array.  The j-th column of A
 51 *          is stored in the array AP as follows:
 52 *          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
 53 *          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
 54 *
 55 *          On exit, the contents of AP are destroyed.
 56 *
 57 *  BP      (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
 58 *          On entry, the upper or lower triangle of the symmetric matrix
 59 *          B, packed columnwise in a linear array.  The j-th column of B
 60 *          is stored in the array BP as follows:
 61 *          if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
 62 *          if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
 63 *
 64 *          On exit, the triangular factor U or L from the Cholesky
 65 *          factorization B = U**T*U or B = L*L**T, in the same storage
 66 *          format as B.
 67 *
 68 *  W       (output) DOUBLE PRECISION array, dimension (N)
 69 *          If INFO = 0, the eigenvalues in ascending order.
 70 *
 71 *  Z       (output) DOUBLE PRECISION array, dimension (LDZ, N)
 72 *          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
 73 *          eigenvectors.  The eigenvectors are normalized as follows:
 74 *          if ITYPE = 1 or 2, Z**T*B*Z = I;
 75 *          if ITYPE = 3, Z**T*inv(B)*Z = I.
 76 *          If JOBZ = 'N', then Z is not referenced.
 77 *
 78 *  LDZ     (input) INTEGER
 79 *          The leading dimension of the array Z.  LDZ >= 1, and if
 80 *          JOBZ = 'V', LDZ >= max(1,N).
 81 *
 82 *  WORK    (workspace) DOUBLE PRECISION array, dimension (3*N)
 83 *
 84 *  INFO    (output) INTEGER
 85 *          = 0:  successful exit
 86 *          < 0:  if INFO = -i, the i-th argument had an illegal value
 87 *          > 0:  DPPTRF or DSPEV returned an error code:
 88 *             <= N:  if INFO = i, DSPEV failed to converge;
 89 *                    i off-diagonal elements of an intermediate
 90 *                    tridiagonal form did not converge to zero.
 91 *             > N:   if INFO = n + i, for 1 <= i <= n, then the leading
 92 *                    minor of order i of B is not positive definite.
 93 *                    The factorization of B could not be completed and
 94 *                    no eigenvalues or eigenvectors were computed.
 95 *
 96 *  =====================================================================
 97 *
 98 *     .. Local Scalars ..
 99       LOGICAL            UPPER, WANTZ
100       CHARACTER          TRANS
101       INTEGER            J, NEIG
102 *     ..
103 *     .. External Functions ..
104       LOGICAL            LSAME
105       EXTERNAL           LSAME
106 *     ..
107 *     .. External Subroutines ..
108       EXTERNAL           DPPTRF, DSPEV, DSPGST, DTPMV, DTPSV, XERBLA
109 *     ..
110 *     .. Executable Statements ..
111 *
112 *     Test the input parameters.
113 *
114       WANTZ = LSAME( JOBZ, 'V' )
115       UPPER = LSAME( UPLO, 'U' )
116 *
117       INFO = 0
118       IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
119          INFO = -1
120       ELSE IF.NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
121          INFO = -2
122       ELSE IF.NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
123          INFO = -3
124       ELSE IF( N.LT.0 ) THEN
125          INFO = -4
126       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
127          INFO = -9
128       END IF
129       IF( INFO.NE.0 ) THEN
130          CALL XERBLA( 'DSPGV '-INFO )
131          RETURN
132       END IF
133 *
134 *     Quick return if possible
135 *
136       IF( N.EQ.0 )
137      $   RETURN
138 *
139 *     Form a Cholesky factorization of B.
140 *
141       CALL DPPTRF( UPLO, N, BP, INFO )
142       IF( INFO.NE.0 ) THEN
143          INFO = N + INFO
144          RETURN
145       END IF
146 *
147 *     Transform problem to standard eigenvalue problem and solve.
148 *
149       CALL DSPGST( ITYPE, UPLO, N, AP, BP, INFO )
150       CALL DSPEV( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, INFO )
151 *
152       IF( WANTZ ) THEN
153 *
154 *        Backtransform eigenvectors to the original problem.
155 *
156          NEIG = N
157          IF( INFO.GT.0 )
158      $      NEIG = INFO - 1
159          IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
160 *
161 *           For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
162 *           backtransform eigenvectors: x = inv(L)**T*y or inv(U)*y
163 *
164             IF( UPPER ) THEN
165                TRANS = 'N'
166             ELSE
167                TRANS = 'T'
168             END IF
169 *
170             DO 10 J = 1, NEIG
171                CALL DTPSV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
172      $                     1 )
173    10       CONTINUE
174 *
175          ELSE IF( ITYPE.EQ.3 ) THEN
176 *
177 *           For B*A*x=(lambda)*x;
178 *           backtransform eigenvectors: x = L*y or U**T*y
179 *
180             IF( UPPER ) THEN
181                TRANS = 'T'
182             ELSE
183                TRANS = 'N'
184             END IF
185 *
186             DO 20 J = 1, NEIG
187                CALL DTPMV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
188      $                     1 )
189    20       CONTINUE
190          END IF
191       END IF
192       RETURN
193 *
194 *     End of DSPGV
195 *
196       END