1       SUBROUTINE ZSYSVXX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV,
  2      $                    EQUED, S, B, LDB, X, LDX, RCOND, RPVGRW, BERR,
  3      $                    N_ERR_BNDS, ERR_BNDS_NORM, ERR_BNDS_COMP,
  4      $                    NPARAMS, PARAMS, WORK, RWORK, INFO )
  5 *
  6 *     -- LAPACK driver routine (version 3.2.2)                          --
  7 *     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and --
  8 *     -- Jason Riedy of Univ. of California Berkeley.                 --
  9 *     -- June 2010                                                    --
 10 *
 11 *     -- LAPACK is a software package provided by Univ. of Tennessee, --
 12 *     -- Univ. of California Berkeley and NAG Ltd.                    --
 13 *
 14       IMPLICIT NONE
 15 *     ..
 16 *     .. Scalar Arguments ..
 17       CHARACTER          EQUED, FACT, UPLO
 18       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
 19      $                   N_ERR_BNDS
 20       DOUBLE PRECISION   RCOND, RPVGRW
 21 *     ..
 22 *     .. Array Arguments ..
 23       INTEGER            IPIV( * )
 24       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
 25      $                   X( LDX, * ), WORK( * )
 26       DOUBLE PRECISION   S( * ), PARAMS( * ), BERR( * ),
 27      $                   ERR_BNDS_NORM( NRHS, * ),
 28      $                   ERR_BNDS_COMP( NRHS, * ), RWORK( * )
 29 *     ..
 30 *
 31 *     Purpose
 32 *     =======
 33 *
 34 *     ZSYSVXX uses the diagonal pivoting factorization to compute the
 35 *     solution to a complex*16 system of linear equations A * X = B, where
 36 *     A is an N-by-N symmetric matrix and X and B are N-by-NRHS
 37 *     matrices.
 38 *
 39 *     If requested, both normwise and maximum componentwise error bounds
 40 *     are returned. ZSYSVXX will return a solution with a tiny
 41 *     guaranteed error (O(eps) where eps is the working machine
 42 *     precision) unless the matrix is very ill-conditioned, in which
 43 *     case a warning is returned. Relevant condition numbers also are
 44 *     calculated and returned.
 45 *
 46 *     ZSYSVXX accepts user-provided factorizations and equilibration
 47 *     factors; see the definitions of the FACT and EQUED options.
 48 *     Solving with refinement and using a factorization from a previous
 49 *     ZSYSVXX call will also produce a solution with either O(eps)
 50 *     errors or warnings, but we cannot make that claim for general
 51 *     user-provided factorizations and equilibration factors if they
 52 *     differ from what ZSYSVXX would itself produce.
 53 *
 54 *     Description
 55 *     ===========
 56 *
 57 *     The following steps are performed:
 58 *
 59 *     1. If FACT = 'E', double precision scaling factors are computed to equilibrate
 60 *     the system:
 61 *
 62 *       diag(S)*A*diag(S)     *inv(diag(S))*X = diag(S)*B
 63 *
 64 *     Whether or not the system will be equilibrated depends on the
 65 *     scaling of the matrix A, but if equilibration is used, A is
 66 *     overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
 67 *
 68 *     2. If FACT = 'N' or 'E', the LU decomposition is used to factor
 69 *     the matrix A (after equilibration if FACT = 'E') as
 70 *
 71 *        A = U * D * U**T,  if UPLO = 'U', or
 72 *        A = L * D * L**T,  if UPLO = 'L',
 73 *
 74 *     where U (or L) is a product of permutation and unit upper (lower)
 75 *     triangular matrices, and D is symmetric and block diagonal with
 76 *     1-by-1 and 2-by-2 diagonal blocks.
 77 *
 78 *     3. If some D(i,i)=0, so that D is exactly singular, then the
 79 *     routine returns with INFO = i. Otherwise, the factored form of A
 80 *     is used to estimate the condition number of the matrix A (see
 81 *     argument RCOND).  If the reciprocal of the condition number is
 82 *     less than machine precision, the routine still goes on to solve
 83 *     for X and compute error bounds as described below.
 84 *
 85 *     4. The system of equations is solved for X using the factored form
 86 *     of A.
 87 *
 88 *     5. By default (unless PARAMS(LA_LINRX_ITREF_I) is set to zero),
 89 *     the routine will use iterative refinement to try to get a small
 90 *     error and error bounds.  Refinement calculates the residual to at
 91 *     least twice the working precision.
 92 *
 93 *     6. If equilibration was used, the matrix X is premultiplied by
 94 *     diag(R) so that it solves the original system before
 95 *     equilibration.
 96 *
 97 *     Arguments
 98 *     =========
 99 *
100 *     Some optional parameters are bundled in the PARAMS array.  These
101 *     settings determine how refinement is performed, but often the
102 *     defaults are acceptable.  If the defaults are acceptable, users
103 *     can pass NPARAMS = 0 which prevents the source code from accessing
104 *     the PARAMS argument.
105 *
106 *     FACT    (input) CHARACTER*1
107 *     Specifies whether or not the factored form of the matrix A is
108 *     supplied on entry, and if not, whether the matrix A should be
109 *     equilibrated before it is factored.
110 *       = 'F':  On entry, AF and IPIV contain the factored form of A.
111 *               If EQUED is not 'N', the matrix A has been
112 *               equilibrated with scaling factors given by S.
113 *               A, AF, and IPIV are not modified.
114 *       = 'N':  The matrix A will be copied to AF and factored.
115 *       = 'E':  The matrix A will be equilibrated if necessary, then
116 *               copied to AF and factored.
117 *
118 *     UPLO    (input) CHARACTER*1
119 *       = 'U':  Upper triangle of A is stored;
120 *       = 'L':  Lower triangle of A is stored.
121 *
122 *     N       (input) INTEGER
123 *     The number of linear equations, i.e., the order of the
124 *     matrix A.  N >= 0.
125 *
126 *     NRHS    (input) INTEGER
127 *     The number of right hand sides, i.e., the number of columns
128 *     of the matrices B and X.  NRHS >= 0.
129 *
130 *     A       (input/output) COMPLEX*16 array, dimension (LDA,N)
131 *     The symmetric matrix A.  If UPLO = 'U', the leading N-by-N
132 *     upper triangular part of A contains the upper triangular
133 *     part of the matrix A, and the strictly lower triangular
134 *     part of A is not referenced.  If UPLO = 'L', the leading
135 *     N-by-N lower triangular part of A contains the lower
136 *     triangular part of the matrix A, and the strictly upper
137 *     triangular part of A is not referenced.
138 *
139 *     On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
140 *     diag(S)*A*diag(S).
141 *
142 *     LDA     (input) INTEGER
143 *     The leading dimension of the array A.  LDA >= max(1,N).
144 *
145 *     AF      (input or output) COMPLEX*16 array, dimension (LDAF,N)
146 *     If FACT = 'F', then AF is an input argument and on entry
147 *     contains the block diagonal matrix D and the multipliers
148 *     used to obtain the factor U or L from the factorization A =
149 *     U*D*U**T or A = L*D*L**T as computed by DSYTRF.
150 *
151 *     If FACT = 'N', then AF is an output argument and on exit
152 *     returns the block diagonal matrix D and the multipliers
153 *     used to obtain the factor U or L from the factorization A =
154 *     U*D*U**T or A = L*D*L**T.
155 *
156 *     LDAF    (input) INTEGER
157 *     The leading dimension of the array AF.  LDAF >= max(1,N).
158 *
159 *     IPIV    (input or output) INTEGER array, dimension (N)
160 *     If FACT = 'F', then IPIV is an input argument and on entry
161 *     contains details of the interchanges and the block
162 *     structure of D, as determined by DSYTRF.  If IPIV(k) > 0,
163 *     then rows and columns k and IPIV(k) were interchanged and
164 *     D(k,k) is a 1-by-1 diagonal block.  If UPLO = 'U' and
165 *     IPIV(k) = IPIV(k-1) < 0, then rows and columns k-1 and
166 *     -IPIV(k) were interchanged and D(k-1:k,k-1:k) is a 2-by-2
167 *     diagonal block.  If UPLO = 'L' and IPIV(k) = IPIV(k+1) < 0,
168 *     then rows and columns k+1 and -IPIV(k) were interchanged
169 *     and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
170 *
171 *     If FACT = 'N', then IPIV is an output argument and on exit
172 *     contains details of the interchanges and the block
173 *     structure of D, as determined by DSYTRF.
174 *
175 *     EQUED   (input or output) CHARACTER*1
176 *     Specifies the form of equilibration that was done.
177 *       = 'N':  No equilibration (always true if FACT = 'N').
178 *       = 'Y':  Both row and column equilibration, i.e., A has been
179 *               replaced by diag(S) * A * diag(S).
180 *     EQUED is an input argument if FACT = 'F'; otherwise, it is an
181 *     output argument.
182 *
183 *     S       (input or output) DOUBLE PRECISION array, dimension (N)
184 *     The scale factors for A.  If EQUED = 'Y', A is multiplied on
185 *     the left and right by diag(S).  S is an input argument if FACT =
186 *     'F'; otherwise, S is an output argument.  If FACT = 'F' and EQUED
187 *     = 'Y', each element of S must be positive.  If S is output, each
188 *     element of S is a power of the radix. If S is input, each element
189 *     of S should be a power of the radix to ensure a reliable solution
190 *     and error estimates. Scaling by powers of the radix does not cause
191 *     rounding errors unless the result underflows or overflows.
192 *     Rounding errors during scaling lead to refining with a matrix that
193 *     is not equivalent to the input matrix, producing error estimates
194 *     that may not be reliable.
195 *
196 *     B       (input/output) COMPLEX*16 array, dimension (LDB,NRHS)
197 *     On entry, the N-by-NRHS right hand side matrix B.
198 *     On exit,
199 *     if EQUED = 'N', B is not modified;
200 *     if EQUED = 'Y', B is overwritten by diag(S)*B;
201 *
202 *     LDB     (input) INTEGER
203 *     The leading dimension of the array B.  LDB >= max(1,N).
204 *
205 *     X       (output) COMPLEX*16 array, dimension (LDX,NRHS)
206 *     If INFO = 0, the N-by-NRHS solution matrix X to the original
207 *     system of equations.  Note that A and B are modified on exit if
208 *     EQUED .ne. 'N', and the solution to the equilibrated system is
209 *     inv(diag(S))*X.
210 *
211 *     LDX     (input) INTEGER
212 *     The leading dimension of the array X.  LDX >= max(1,N).
213 *
214 *     RCOND   (output) DOUBLE PRECISION
215 *     Reciprocal scaled condition number.  This is an estimate of the
216 *     reciprocal Skeel condition number of the matrix A after
217 *     equilibration (if done).  If this is less than the machine
218 *     precision (in particular, if it is zero), the matrix is singular
219 *     to working precision.  Note that the error may still be small even
220 *     if this number is very small and the matrix appears ill-
221 *     conditioned.
222 *
223 *     RPVGRW  (output) DOUBLE PRECISION
224 *     Reciprocal pivot growth.  On exit, this contains the reciprocal
225 *     pivot growth factor norm(A)/norm(U). The "max absolute element"
226 *     norm is used.  If this is much less than 1, then the stability of
227 *     the LU factorization of the (equilibrated) matrix A could be poor.
228 *     This also means that the solution X, estimated condition numbers,
229 *     and error bounds could be unreliable. If factorization fails with
230 *     0<INFO<=N, then this contains the reciprocal pivot growth factor
231 *     for the leading INFO columns of A.
232 *
233 *     BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
234 *     Componentwise relative backward error.  This is the
235 *     componentwise relative backward error of each solution vector X(j)
236 *     (i.e., the smallest relative change in any element of A or B that
237 *     makes X(j) an exact solution).
238 *
239 *     N_ERR_BNDS (input) INTEGER
240 *     Number of error bounds to return for each right hand side
241 *     and each type (normwise or componentwise).  See ERR_BNDS_NORM and
242 *     ERR_BNDS_COMP below.
243 *
244 *     ERR_BNDS_NORM  (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
245 *     For each right-hand side, this array contains information about
246 *     various error bounds and condition numbers corresponding to the
247 *     normwise relative error, which is defined as follows:
248 *
249 *     Normwise relative error in the ith solution vector:
250 *             max_j (abs(XTRUE(j,i) - X(j,i)))
251 *            ------------------------------
252 *                  max_j abs(X(j,i))
253 *
254 *     The array is indexed by the type of error information as described
255 *     below. There currently are up to three pieces of information
256 *     returned.
257 *
258 *     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
259 *     right-hand side.
260 *
261 *     The second index in ERR_BNDS_NORM(:,err) contains the following
262 *     three fields:
263 *     err = 1 "Trust/don't trust" boolean. Trust the answer if the
264 *              reciprocal condition number is less than the threshold
265 *              sqrt(n) * dlamch('Epsilon').
266 *
267 *     err = 2 "Guaranteed" error bound: The estimated forward error,
268 *              almost certainly within a factor of 10 of the true error
269 *              so long as the next entry is greater than the threshold
270 *              sqrt(n) * dlamch('Epsilon'). This error bound should only
271 *              be trusted if the previous boolean is true.
272 *
273 *     err = 3  Reciprocal condition number: Estimated normwise
274 *              reciprocal condition number.  Compared with the threshold
275 *              sqrt(n) * dlamch('Epsilon') to determine if the error
276 *              estimate is "guaranteed". These reciprocal condition
277 *              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
278 *              appropriately scaled matrix Z.
279 *              Let Z = S*A, where S scales each row by a power of the
280 *              radix so all absolute row sums of Z are approximately 1.
281 *
282 *     See Lapack Working Note 165 for further details and extra
283 *     cautions.
284 *
285 *     ERR_BNDS_COMP  (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
286 *     For each right-hand side, this array contains information about
287 *     various error bounds and condition numbers corresponding to the
288 *     componentwise relative error, which is defined as follows:
289 *
290 *     Componentwise relative error in the ith solution vector:
291 *                    abs(XTRUE(j,i) - X(j,i))
292 *             max_j ----------------------
293 *                         abs(X(j,i))
294 *
295 *     The array is indexed by the right-hand side i (on which the
296 *     componentwise relative error depends), and the type of error
297 *     information as described below. There currently are up to three
298 *     pieces of information returned for each right-hand side. If
299 *     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
300 *     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS .LT. 3, then at most
301 *     the first (:,N_ERR_BNDS) entries are returned.
302 *
303 *     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
304 *     right-hand side.
305 *
306 *     The second index in ERR_BNDS_COMP(:,err) contains the following
307 *     three fields:
308 *     err = 1 "Trust/don't trust" boolean. Trust the answer if the
309 *              reciprocal condition number is less than the threshold
310 *              sqrt(n) * dlamch('Epsilon').
311 *
312 *     err = 2 "Guaranteed" error bound: The estimated forward error,
313 *              almost certainly within a factor of 10 of the true error
314 *              so long as the next entry is greater than the threshold
315 *              sqrt(n) * dlamch('Epsilon'). This error bound should only
316 *              be trusted if the previous boolean is true.
317 *
318 *     err = 3  Reciprocal condition number: Estimated componentwise
319 *              reciprocal condition number.  Compared with the threshold
320 *              sqrt(n) * dlamch('Epsilon') to determine if the error
321 *              estimate is "guaranteed". These reciprocal condition
322 *              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
323 *              appropriately scaled matrix Z.
324 *              Let Z = S*(A*diag(x)), where x is the solution for the
325 *              current right-hand side and S scales each row of
326 *              A*diag(x) by a power of the radix so all absolute row
327 *              sums of Z are approximately 1.
328 *
329 *     See Lapack Working Note 165 for further details and extra
330 *     cautions.
331 *
332 *     NPARAMS (input) INTEGER
333 *     Specifies the number of parameters set in PARAMS.  If .LE. 0, the
334 *     PARAMS array is never referenced and default values are used.
335 *
336 *     PARAMS  (input / output) DOUBLE PRECISION array, dimension NPARAMS
337 *     Specifies algorithm parameters.  If an entry is .LT. 0.0, then
338 *     that entry will be filled with default value used for that
339 *     parameter.  Only positions up to NPARAMS are accessed; defaults
340 *     are used for higher-numbered parameters.
341 *
342 *       PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
343 *            refinement or not.
344 *         Default: 1.0D+0
345 *            = 0.0 : No refinement is performed, and no error bounds are
346 *                    computed.
347 *            = 1.0 : Use the extra-precise refinement algorithm.
348 *              (other values are reserved for future use)
349 *
350 *       PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
351 *            computations allowed for refinement.
352 *         Default: 10
353 *         Aggressive: Set to 100 to permit convergence using approximate
354 *                     factorizations or factorizations other than LU. If
355 *                     the factorization uses a technique other than
356 *                     Gaussian elimination, the guarantees in
357 *                     err_bnds_norm and err_bnds_comp may no longer be
358 *                     trustworthy.
359 *
360 *       PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
361 *            will attempt to find a solution with small componentwise
362 *            relative error in the double-precision algorithm.  Positive
363 *            is true, 0.0 is false.
364 *         Default: 1.0 (attempt componentwise convergence)
365 *
366 *     WORK    (workspace) COMPLEX*16 array, dimension (2*N)
367 *
368 *     RWORK   (workspace) DOUBLE PRECISION array, dimension (2*N)
369 *
370 *     INFO    (output) INTEGER
371 *       = 0:  Successful exit. The solution to every right-hand side is
372 *         guaranteed.
373 *       < 0:  If INFO = -i, the i-th argument had an illegal value
374 *       > 0 and <= N:  U(INFO,INFO) is exactly zero.  The factorization
375 *         has been completed, but the factor U is exactly singular, so
376 *         the solution and error bounds could not be computed. RCOND = 0
377 *         is returned.
378 *       = N+J: The solution corresponding to the Jth right-hand side is
379 *         not guaranteed. The solutions corresponding to other right-
380 *         hand sides K with K > J may not be guaranteed as well, but
381 *         only the first such right-hand side is reported. If a small
382 *         componentwise error is not requested (PARAMS(3) = 0.0) then
383 *         the Jth right-hand side is the first with a normwise error
384 *         bound that is not guaranteed (the smallest J such
385 *         that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0)
386 *         the Jth right-hand side is the first with either a normwise or
387 *         componentwise error bound that is not guaranteed (the smallest
388 *         J such that either ERR_BNDS_NORM(J,1) = 0.0 or
389 *         ERR_BNDS_COMP(J,1) = 0.0). See the definition of
390 *         ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information
391 *         about all of the right-hand sides check ERR_BNDS_NORM or
392 *         ERR_BNDS_COMP.
393 *
394 *     ==================================================================
395 *
396 *     .. Parameters ..
397       DOUBLE PRECISION   ZERO, ONE
398       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
399       INTEGER            FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
400       INTEGER            RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
401       INTEGER            CMP_ERR_I, PIV_GROWTH_I
402       PARAMETER          ( FINAL_NRM_ERR_I = 1, FINAL_CMP_ERR_I = 2,
403      $                   BERR_I = 3 )
404       PARAMETER          ( RCOND_I = 4, NRM_RCOND_I = 5, NRM_ERR_I = 6 )
405       PARAMETER          ( CMP_RCOND_I = 7, CMP_ERR_I = 8,
406      $                   PIV_GROWTH_I = 9 )
407 *     ..
408 *     .. Local Scalars ..
409       LOGICAL            EQUIL, NOFACT, RCEQU
410       INTEGER            INFEQU, J
411       DOUBLE PRECISION   AMAX, BIGNUM, SMIN, SMAX, SCOND, SMLNUM
412 *     ..
413 *     .. External Functions ..
414       EXTERNAL           LSAME, DLAMCH, ZLA_SYRPVGRW
415       LOGICAL            LSAME
416       DOUBLE PRECISION   DLAMCH, ZLA_SYRPVGRW
417 *     ..
418 *     .. External Subroutines ..
419       EXTERNAL           ZSYCON, ZSYEQUB, ZSYTRF, ZSYTRS, ZLACPY,
420      $                   ZLAQSY, XERBLA, ZLASCL2, ZSYRFSX
421 *     ..
422 *     .. Intrinsic Functions ..
423       INTRINSIC          MAXMIN
424 *     ..
425 *     .. Executable Statements ..
426 *
427       INFO = 0
428       NOFACT = LSAME( FACT, 'N' )
429       EQUIL = LSAME( FACT, 'E' )
430       SMLNUM = DLAMCH( 'Safe minimum' )
431       BIGNUM = ONE / SMLNUM
432       IF( NOFACT .OR. EQUIL ) THEN
433          EQUED = 'N'
434          RCEQU = .FALSE.
435       ELSE
436          RCEQU = LSAME( EQUED, 'Y' )
437       ENDIF
438 *
439 *     Default is failure.  If an input parameter is wrong or
440 *     factorization fails, make everything look horrible.  Only the
441 *     pivot growth is set here, the rest is initialized in ZSYRFSX.
442 *
443       RPVGRW = ZERO
444 *
445 *     Test the input parameters.  PARAMS is not tested until ZSYRFSX.
446 *
447       IF.NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.
448      $     LSAME( FACT, 'F' ) ) THEN
449          INFO = -1
450       ELSE IF.NOT.LSAME(UPLO, 'U'.AND.
451      $         .NOT.LSAME(UPLO, 'L') ) THEN
452          INFO = -2
453       ELSE IF( N.LT.0 ) THEN
454          INFO = -3
455       ELSE IF( NRHS.LT.0 ) THEN
456          INFO = -4
457       ELSE IF( LDA.LT.MAX1, N ) ) THEN
458          INFO = -6
459       ELSE IF( LDAF.LT.MAX1, N ) ) THEN
460          INFO = -8
461       ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
462      $        ( RCEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
463          INFO = -9
464       ELSE
465          IF ( RCEQU ) THEN
466             SMIN = BIGNUM
467             SMAX = ZERO
468             DO 10 J = 1, N
469                SMIN = MIN( SMIN, S( J ) )
470                SMAX = MAX( SMAX, S( J ) )
471  10         CONTINUE
472             IF( SMIN.LE.ZERO ) THEN
473                INFO = -10
474             ELSE IF( N.GT.0 ) THEN
475                SCOND = MAX( SMIN, SMLNUM ) / MIN( SMAX, BIGNUM )
476             ELSE
477                SCOND = ONE
478             END IF
479          END IF
480          IF( INFO.EQ.0 ) THEN
481             IF( LDB.LT.MAX1, N ) ) THEN
482                INFO = -12
483             ELSE IF( LDX.LT.MAX1, N ) ) THEN
484                INFO = -14
485             END IF
486          END IF
487       END IF
488 *
489       IF( INFO.NE.0 ) THEN
490          CALL XERBLA( 'ZSYSVXX'-INFO )
491          RETURN
492       END IF
493 *
494       IF( EQUIL ) THEN
495 *
496 *     Compute row and column scalings to equilibrate the matrix A.
497 *
498          CALL ZSYEQUB( UPLO, N, A, LDA, S, SCOND, AMAX, WORK, INFEQU )
499          IF( INFEQU.EQ.0 ) THEN
500 *
501 *     Equilibrate the matrix.
502 *
503             CALL ZLAQSY( UPLO, N, A, LDA, S, SCOND, AMAX, EQUED )
504             RCEQU = LSAME( EQUED, 'Y' )
505          END IF
506 
507       END IF
508 *
509 *     Scale the right hand-side.
510 *
511       IF( RCEQU ) CALL ZLASCL2( N, NRHS, S, B, LDB )
512 *
513       IF( NOFACT .OR. EQUIL ) THEN
514 *
515 *        Compute the LDL^T or UDU^T factorization of A.
516 *
517          CALL ZLACPY( UPLO, N, N, A, LDA, AF, LDAF )
518          CALL ZSYTRF( UPLO, N, AF, LDAF, IPIV, WORK, 5*MAX(1,N), INFO )
519 *
520 *        Return if INFO is non-zero.
521 *
522          IF( INFO.GT.0 ) THEN
523 *
524 *           Pivot in column INFO is exactly 0
525 *           Compute the reciprocal pivot growth factor of the
526 *           leading rank-deficient INFO columns of A.
527 *
528             IF ( N.GT.0 )
529      $           RPVGRW = ZLA_SYRPVGRW( UPLO, N, INFO, A, LDA, AF,
530      $           LDAF, IPIV, RWORK )
531             RETURN
532          END IF
533       END IF
534 *
535 *     Compute the reciprocal pivot growth factor RPVGRW.
536 *
537       IF ( N.GT.0 )
538      $     RPVGRW = ZLA_SYRPVGRW( UPLO, N, INFO, A, LDA, AF, LDAF,
539      $     IPIV, RWORK )
540 *
541 *     Compute the solution matrix X.
542 *
543       CALL ZLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
544       CALL ZSYTRS( UPLO, N, NRHS, AF, LDAF, IPIV, X, LDX, INFO )
545 *
546 *     Use iterative refinement to improve the computed solution and
547 *     compute error bounds and backward error estimates for it.
548 *
549       CALL ZSYRFSX( UPLO, EQUED, N, NRHS, A, LDA, AF, LDAF, IPIV,
550      $     S, B, LDB, X, LDX, RCOND, BERR, N_ERR_BNDS, ERR_BNDS_NORM,
551      $     ERR_BNDS_COMP, NPARAMS, PARAMS, WORK, RWORK, INFO )
552 *
553 *     Scale solutions.
554 *
555       IF ( RCEQU ) THEN
556          CALL ZLASCL2 (N, NRHS, S, X, LDX )
557       END IF
558 *
559       RETURN
560 *
561 *     End of ZSYSVXX
562 *
563       END