Content

Computing the QR Factorization

In this example we compute the \(QR\) factorization and use it for solving a system of linear equations.

Consider the system of linear equations \(Ax=b\). We store the coefficient matrix \(A\) and the right-hand side \(b\) in a single matrix \(Ab = (A,b)\). We then compute the \(QR\) factorization of \(Ab\) with lapack::qrf such that \(QR = (A,b).\) Hence, we have \(R = (Q^T A, Q^T b)\) where \(R\) is an upper trapezoidal matrix and \(Q^T A\) upper triangular. We finally use the triangular solver blas::sm to obtain the solution of \((Q^T A) x = (Q^T b)\).

Function lapack::qrf is the FLENS port of LAPACK's geqrf and blas::sm the port of the BLAS routine trsm.

Example Code

#include <iostream>
#include <flens/flens.cxx>

using namespace std;
using namespace flens;

typedef double   T;

int
main()
{

    typedef GeMatrix<FullStorage<T> >   GeMatrix;
    typedef DenseVector<Array<T> >      DenseVector;

    typedef GeMatrix::IndexType   IndexType;
    const Underscore<IndexType>   _;

    const IndexType m = 4,
                    n = 5;

    GeMatrix  Ab(m, n);

    Ab =  2,   3,  -1,   0,   20,
         -6,  -5,   0,   2,  -33,
          2,  -5,   6,  -6,  -43,
          4,   6,   2,  -3,   49;

    cout << "Ab = " << Ab << endl;

    DenseVector tau(std::min(m,n));
    DenseVector work;

    lapack::qrf(Ab, tau, work);
    cout << "Ab = " << Ab << endl;
    cout << "tau = " << tau << endl;

    const auto A = Ab(_,_(1,m));
    auto       B = Ab(_,_(m+1,n));

    blas::sm(Left, NoTrans, 1, A.upper(), B);

    cout << "X = " << B << endl;
}

Comments on Example Code

#include <iostream>

With header flens.cxx all of FLENS gets included.

#include <flens/flens.cxx>

using namespace std;
using namespace flens;

typedef double   T;

int
main()
{

Define some convenient typedefs for the matrix/vector types

    typedef GeMatrix<FullStorage<T> >   GeMatrix;
    typedef DenseVector<Array<T> >      DenseVector;

Define an underscore operator for convenient matrix slicing

    typedef GeMatrix::IndexType   IndexType;
    const Underscore<IndexType>   _;

    const IndexType m = 4,
                    n = 5;

    GeMatrix  Ab(m, n);

    Ab =  2,   3,  -1,   0,   20,
         -6,  -5,   0,   2,  -33,
          2,  -5,   6,  -6,  -43,
          4,   6,   2,  -3,   49;

    cout << "Ab = " << Ab << endl;

tau will contain the scalar factors of the elementary reflectors (see dgeqrf for details). Vector work is used as workspace and, if empty, gets resized by lapack::qrf to optimal size.

    DenseVector tau(std::min(m,n));
    DenseVector work;

Compute the \(QR\) factorization of \(A\) with lapack::qrf the FLENS port of LAPACK's dgeqrf. Note: With lapack::qrf(Ab, tau) the workspace gets created internally and temporarily.

    lapack::qrf(Ab, tau, work);
    cout << "Ab = " << Ab << endl;
    cout << "tau = " << tau << endl;

Solve the system of linear equation \(Ax =B\) using the triangular solver blas::sm which is the FLENS implementation of the BLAS routine trsm. Note that A.upper() creates a triangular view.

    const auto A = Ab(_,_(1,m));
    auto       B = Ab(_,_(m+1,n));

    blas::sm(Left, NoTrans, 1, A.upper(), B);

    cout << "X = " << B << endl;
}

Compile

$shell> cd flens/examples                                                      
$shell> g++ -std=c++11 -Wall -I../.. -o lapack-geqrf lapack-geqrf.cc           

Run

$shell> cd flens/examples                                                      
$shell> ./lapack-geqrf                                                         
Ab = 
            2             3            -1             0            20 
           -6            -5             0             2           -33 
            2            -5             6            -6           -43 
            4             6             2            -3            49 
Ab = 
     -7.74597      -6.45497      -2.32379       4.64758      -44.9266 
    -0.615639      -7.30297        4.9295      -4.38178      -60.7972 
     0.205213     -0.854313      -3.36155       2.85583      -4.55148 
     0.410426      0.260891      0.453851      0.210352       1.89316 
tau = 
       1.2582         1.1124         1.6584              0 
X = 
            1 
            9 
            9 
            9 

Example with Implicit Workspace Creation

In this simplified variant of the above example the workspace gets created implicit. This simplifies the usage of FLENS-LAPACK routines. However, if you are doing this inside a loop it might lead to a considerable performance penalty.

Example Code

#include <iostream>
#include <flens/flens.cxx>

using namespace std;
using namespace flens;

typedef double   T;

int
main()
{
    GeMatrix<FullStorage<double> >     A(4,4);
    DenseVector<Array<double> >        b(4);
    DenseVector<Array<double> >        tau;
    //DenseVector<Array<double> >      work;

    A =  2,   3,  -1,   0,
        -6,  -5,   0,   2,
         2,  -5,   6,  -6,
         4,   6,   2,  -3;

    b = 20,
       -33,
       -43,
        49;

    cout << "A = " << A << endl;
    cout << "b = " << b << endl;

    lapack::qrf(A, tau);
    //lapack::qrf(A, tau, work);

    lapack::ormqr(Left, Trans, A, tau, b);
    //lapack::ormqr(Left, Trans, A, tau, b, work);

    blas::sv(NoTrans, A.upper(), b);

    cout << "x = " << b << endl;
}

Comments on Example Code

Compute the factorization \(A = QR\). Note that the workspace gets created implicitly and temporarily. So you might not want to do this inside a loop.

    lapack::qrf(A, tau);
    //lapack::qrf(A, tau, work);

Compute \(\tilde{b} = Q^H b\). Vector \(b\) gets overwritten with \(\tilde{b}\).

    lapack::ormqr(Left, Trans, A, tau, b);
    //lapack::ormqr(Left, Trans, A, tau, b, work);

Solve \(R x = \tilde{b}\). Vector \(b\) gets overwritten with \(x\).

    blas::sv(NoTrans, A.upper(), b);

Compile

$shell> cd flens/examples                                                      
$shell> g++ -DUSE_CXXLAPACK -framework vecLib -std=c++11 -Wall -I../.. -o lapack-simple-geqrf lapack-simple-geqrf.cc                                             

Run

$shell> cd flens/examples                                                      
$shell> ./lapack-simple-geqrf                                                  
A = 
            2             3            -1             0 
           -6            -5             0             2 
            2            -5             6            -6 
            4             6             2            -3 
b = 
           20            -33            -43             49 
x = 
            1              9              9              9 

Example with Complex Numbers

Example Code

#include <iostream>
#include <flens/flens.cxx>

using namespace std;
using namespace flens;


int
main()
{
    typedef complex<double>             Complex;
    const Complex                       I(0,1);

    GeMatrix<FullStorage<Complex> >     A(4,4);
    DenseVector<Array<Complex> >        b(4);
    DenseVector<Array<Complex> >        tau;

    A =  2,   3,  -1,   0,
        -6,  -5,   0,   2,
         2,  -5,   6,  -6,
         4,   6,   2,  -3;
    A *=I;

    b = 20,
       -33,
       -43,
        49;
    b *= I;

    cout << "A = " << A << endl;
    cout << "b = " << b << endl;

    lapack::qrf(A, tau);

    lapack::unmqr(Left, ConjTrans, A, tau, b);

    blas::sv(NoTrans, A.upper(), b);

    cout << "x = " << b << endl;
}

Comments on Example Code

Compute the factorization \(A = QR\).

    lapack::qrf(A, tau);

Compute \(\tilde{b} = Q^H b\). Vector \(b\) gets overwritten with \(\tilde{b}\).

    lapack::unmqr(Left, ConjTrans, A, tau, b);

Solve \(R x = \tilde{b}\). Vector \(b\) gets overwritten with \(x\).

    blas::sv(NoTrans, A.upper(), b);

Compile

$shell> cd flens/examples                                                      
$shell> g++ -DUSE_CXXLAPACK -framework vecLib -std=c++11 -Wall -I../.. -o lapack-complex-geqrf lapack-complex-geqrf.cc                                            

Run

$shell> cd flens/examples                                                      
$shell> ./lapack-complex-geqrf                                                 
A = 
                       (0,2)                        (0,3)                      (-0,-1)                        (0,0) 
                     (-0,-6)                      (-0,-5)                        (0,0)                        (0,2) 
                       (0,2)                      (-0,-5)                        (0,6)                      (-0,-6) 
                       (0,4)                        (0,6)                        (0,2)                      (-0,-3) 
b = 
                      (0,20)                      (-0,-33)                      (-0,-43)                        (0,49) 
x = 
             (1,-2.3617e-14)                (9,1.8825e-15)              (9,-5.29762e-14)              (9,-6.22797e-14)