1       SUBROUTINE CGBMV(TRANS,M,N,KL,KU,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
  2 *     .. Scalar Arguments ..
  3       COMPLEX ALPHA,BETA
  4       INTEGER INCX,INCY,KL,KU,LDA,M,N
  5       CHARACTER TRANS
  6 *     ..
  7 *     .. Array Arguments ..
  8       COMPLEX A(LDA,*),X(*),Y(*)
  9 *     ..
 10 *
 11 *  Purpose
 12 *  =======
 13 *
 14 *  CGBMV  performs one of the matrix-vector operations
 15 *
 16 *     y := alpha*A*x + beta*y,   or   y := alpha*A**T*x + beta*y,   or
 17 *
 18 *     y := alpha*A**H*x + beta*y,
 19 *
 20 *  where alpha and beta are scalars, x and y are vectors and A is an
 21 *  m by n band matrix, with kl sub-diagonals and ku super-diagonals.
 22 *
 23 *  Arguments
 24 *  ==========
 25 *
 26 *  TRANS  - CHARACTER*1.
 27 *           On entry, TRANS specifies the operation to be performed as
 28 *           follows:
 29 *
 30 *              TRANS = 'N' or 'n'   y := alpha*A*x + beta*y.
 31 *
 32 *              TRANS = 'T' or 't'   y := alpha*A**T*x + beta*y.
 33 *
 34 *              TRANS = 'C' or 'c'   y := alpha*A**H*x + beta*y.
 35 *
 36 *           Unchanged on exit.
 37 *
 38 *  M      - INTEGER.
 39 *           On entry, M specifies the number of rows of the matrix A.
 40 *           M must be at least zero.
 41 *           Unchanged on exit.
 42 *
 43 *  N      - INTEGER.
 44 *           On entry, N specifies the number of columns of the matrix A.
 45 *           N must be at least zero.
 46 *           Unchanged on exit.
 47 *
 48 *  KL     - INTEGER.
 49 *           On entry, KL specifies the number of sub-diagonals of the
 50 *           matrix A. KL must satisfy  0 .le. KL.
 51 *           Unchanged on exit.
 52 *
 53 *  KU     - INTEGER.
 54 *           On entry, KU specifies the number of super-diagonals of the
 55 *           matrix A. KU must satisfy  0 .le. KU.
 56 *           Unchanged on exit.
 57 *
 58 *  ALPHA  - COMPLEX         .
 59 *           On entry, ALPHA specifies the scalar alpha.
 60 *           Unchanged on exit.
 61 *
 62 *  A      - COMPLEX          array of DIMENSION ( LDA, n ).
 63 *           Before entry, the leading ( kl + ku + 1 ) by n part of the
 64 *           array A must contain the matrix of coefficients, supplied
 65 *           column by column, with the leading diagonal of the matrix in
 66 *           row ( ku + 1 ) of the array, the first super-diagonal
 67 *           starting at position 2 in row ku, the first sub-diagonal
 68 *           starting at position 1 in row ( ku + 2 ), and so on.
 69 *           Elements in the array A that do not correspond to elements
 70 *           in the band matrix (such as the top left ku by ku triangle)
 71 *           are not referenced.
 72 *           The following program segment will transfer a band matrix
 73 *           from conventional full matrix storage to band storage:
 74 *
 75 *                 DO 20, J = 1, N
 76 *                    K = KU + 1 - J
 77 *                    DO 10, I = MAX( 1, J - KU ), MIN( M, J + KL )
 78 *                       A( K + I, J ) = matrix( I, J )
 79 *              10    CONTINUE
 80 *              20 CONTINUE
 81 *
 82 *           Unchanged on exit.
 83 *
 84 *  LDA    - INTEGER.
 85 *           On entry, LDA specifies the first dimension of A as declared
 86 *           in the calling (sub) program. LDA must be at least
 87 *           ( kl + ku + 1 ).
 88 *           Unchanged on exit.
 89 *
 90 *  X      - COMPLEX          array of DIMENSION at least
 91 *           ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
 92 *           and at least
 93 *           ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
 94 *           Before entry, the incremented array X must contain the
 95 *           vector x.
 96 *           Unchanged on exit.
 97 *
 98 *  INCX   - INTEGER.
 99 *           On entry, INCX specifies the increment for the elements of
100 *           X. INCX must not be zero.
101 *           Unchanged on exit.
102 *
103 *  BETA   - COMPLEX         .
104 *           On entry, BETA specifies the scalar beta. When BETA is
105 *           supplied as zero then Y need not be set on input.
106 *           Unchanged on exit.
107 *
108 *  Y      - COMPLEX          array of DIMENSION at least
109 *           ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
110 *           and at least
111 *           ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
112 *           Before entry, the incremented array Y must contain the
113 *           vector y. On exit, Y is overwritten by the updated vector y.
114 *
115 *
116 *  INCY   - INTEGER.
117 *           On entry, INCY specifies the increment for the elements of
118 *           Y. INCY must not be zero.
119 *           Unchanged on exit.
120 *
121 *  Further Details
122 *  ===============
123 *
124 *  Level 2 Blas routine.
125 *  The vector and matrix arguments are not referenced when N = 0, or M = 0
126 *
127 *  -- Written on 22-October-1986.
128 *     Jack Dongarra, Argonne National Lab.
129 *     Jeremy Du Croz, Nag Central Office.
130 *     Sven Hammarling, Nag Central Office.
131 *     Richard Hanson, Sandia National Labs.
132 *
133 *  =====================================================================
134 *
135 *     .. Parameters ..
136       COMPLEX ONE
137       PARAMETER (ONE= (1.0E+0,0.0E+0))
138       COMPLEX ZERO
139       PARAMETER (ZERO= (0.0E+0,0.0E+0))
140 *     ..
141 *     .. Local Scalars ..
142       COMPLEX TEMP
143       INTEGER I,INFO,IX,IY,J,JX,JY,K,KUP1,KX,KY,LENX,LENY
144       LOGICAL NOCONJ
145 *     ..
146 *     .. External Functions ..
147       LOGICAL LSAME
148       EXTERNAL LSAME
149 *     ..
150 *     .. External Subroutines ..
151       EXTERNAL XERBLA
152 *     ..
153 *     .. Intrinsic Functions ..
154       INTRINSIC CONJG,MAX,MIN
155 *     ..
156 *
157 *     Test the input parameters.
158 *
159       INFO = 0
160       IF (.NOT.LSAME(TRANS,'N'.AND. .NOT.LSAME(TRANS,'T'.AND.
161      +    .NOT.LSAME(TRANS,'C')) THEN
162           INFO = 1
163       ELSE IF (M.LT.0THEN
164           INFO = 2
165       ELSE IF (N.LT.0THEN
166           INFO = 3
167       ELSE IF (KL.LT.0THEN
168           INFO = 4
169       ELSE IF (KU.LT.0THEN
170           INFO = 5
171       ELSE IF (LDA.LT. (KL+KU+1)) THEN
172           INFO = 8
173       ELSE IF (INCX.EQ.0THEN
174           INFO = 10
175       ELSE IF (INCY.EQ.0THEN
176           INFO = 13
177       END IF
178       IF (INFO.NE.0THEN
179           CALL XERBLA('CGBMV ',INFO)
180           RETURN
181       END IF
182 *
183 *     Quick return if possible.
184 *
185       IF ((M.EQ.0.OR. (N.EQ.0.OR.
186      +    ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
187 *
188       NOCONJ = LSAME(TRANS,'T')
189 *
190 *     Set  LENX  and  LENY, the lengths of the vectors x and y, and set
191 *     up the start points in  X  and  Y.
192 *
193       IF (LSAME(TRANS,'N')) THEN
194           LENX = N
195           LENY = M
196       ELSE
197           LENX = M
198           LENY = N
199       END IF
200       IF (INCX.GT.0THEN
201           KX = 1
202       ELSE
203           KX = 1 - (LENX-1)*INCX
204       END IF
205       IF (INCY.GT.0THEN
206           KY = 1
207       ELSE
208           KY = 1 - (LENY-1)*INCY
209       END IF
210 *
211 *     Start the operations. In this version the elements of A are
212 *     accessed sequentially with one pass through the band part of A.
213 *
214 *     First form  y := beta*y.
215 *
216       IF (BETA.NE.ONE) THEN
217           IF (INCY.EQ.1THEN
218               IF (BETA.EQ.ZERO) THEN
219                   DO 10 I = 1,LENY
220                       Y(I) = ZERO
221    10             CONTINUE
222               ELSE
223                   DO 20 I = 1,LENY
224                       Y(I) = BETA*Y(I)
225    20             CONTINUE
226               END IF
227           ELSE
228               IY = KY
229               IF (BETA.EQ.ZERO) THEN
230                   DO 30 I = 1,LENY
231                       Y(IY) = ZERO
232                       IY = IY + INCY
233    30             CONTINUE
234               ELSE
235                   DO 40 I = 1,LENY
236                       Y(IY) = BETA*Y(IY)
237                       IY = IY + INCY
238    40             CONTINUE
239               END IF
240           END IF
241       END IF
242       IF (ALPHA.EQ.ZERO) RETURN
243       KUP1 = KU + 1
244       IF (LSAME(TRANS,'N')) THEN
245 *
246 *        Form  y := alpha*A*x + y.
247 *
248           JX = KX
249           IF (INCY.EQ.1THEN
250               DO 60 J = 1,N
251                   IF (X(JX).NE.ZERO) THEN
252                       TEMP = ALPHA*X(JX)
253                       K = KUP1 - J
254                       DO 50 I = MAX(1,J-KU),MIN(M,J+KL)
255                           Y(I) = Y(I) + TEMP*A(K+I,J)
256    50                 CONTINUE
257                   END IF
258                   JX = JX + INCX
259    60         CONTINUE
260           ELSE
261               DO 80 J = 1,N
262                   IF (X(JX).NE.ZERO) THEN
263                       TEMP = ALPHA*X(JX)
264                       IY = KY
265                       K = KUP1 - J
266                       DO 70 I = MAX(1,J-KU),MIN(M,J+KL)
267                           Y(IY) = Y(IY) + TEMP*A(K+I,J)
268                           IY = IY + INCY
269    70                 CONTINUE
270                   END IF
271                   JX = JX + INCX
272                   IF (J.GT.KU) KY = KY + INCY
273    80         CONTINUE
274           END IF
275       ELSE
276 *
277 *        Form  y := alpha*A**T*x + y  or  y := alpha*A**H*x + y.
278 *
279           JY = KY
280           IF (INCX.EQ.1THEN
281               DO 110 J = 1,N
282                   TEMP = ZERO
283                   K = KUP1 - J
284                   IF (NOCONJ) THEN
285                       DO 90 I = MAX(1,J-KU),MIN(M,J+KL)
286                           TEMP = TEMP + A(K+I,J)*X(I)
287    90                 CONTINUE
288                   ELSE
289                       DO 100 I = MAX(1,J-KU),MIN(M,J+KL)
290                           TEMP = TEMP + CONJG(A(K+I,J))*X(I)
291   100                 CONTINUE
292                   END IF
293                   Y(JY) = Y(JY) + ALPHA*TEMP
294                   JY = JY + INCY
295   110         CONTINUE
296           ELSE
297               DO 140 J = 1,N
298                   TEMP = ZERO
299                   IX = KX
300                   K = KUP1 - J
301                   IF (NOCONJ) THEN
302                       DO 120 I = MAX(1,J-KU),MIN(M,J+KL)
303                           TEMP = TEMP + A(K+I,J)*X(IX)
304                           IX = IX + INCX
305   120                 CONTINUE
306                   ELSE
307                       DO 130 I = MAX(1,J-KU),MIN(M,J+KL)
308                           TEMP = TEMP + CONJG(A(K+I,J))*X(IX)
309                           IX = IX + INCX
310   130                 CONTINUE
311                   END IF
312                   Y(JY) = Y(JY) + ALPHA*TEMP
313                   JY = JY + INCY
314                   IF (J.GT.KU) KX = KX + INCX
315   140         CONTINUE
316           END IF
317       END IF
318 *
319       RETURN
320 *
321 *     End of CGBMV .
322 *
323       END