1       SUBROUTINE CHPMV(UPLO,N,ALPHA,AP,X,INCX,BETA,Y,INCY)
  2 *     .. Scalar Arguments ..
  3       COMPLEX ALPHA,BETA
  4       INTEGER INCX,INCY,N
  5       CHARACTER UPLO
  6 *     ..
  7 *     .. Array Arguments ..
  8       COMPLEX AP(*),X(*),Y(*)
  9 *     ..
 10 *
 11 *  Purpose
 12 *  =======
 13 *
 14 *  CHPMV  performs the matrix-vector operation
 15 *
 16 *     y := alpha*A*x + beta*y,
 17 *
 18 *  where alpha and beta are scalars, x and y are n element vectors and
 19 *  A is an n by n hermitian matrix, supplied in packed form.
 20 *
 21 *  Arguments
 22 *  ==========
 23 *
 24 *  UPLO   - CHARACTER*1.
 25 *           On entry, UPLO specifies whether the upper or lower
 26 *           triangular part of the matrix A is supplied in the packed
 27 *           array AP as follows:
 28 *
 29 *              UPLO = 'U' or 'u'   The upper triangular part of A is
 30 *                                  supplied in AP.
 31 *
 32 *              UPLO = 'L' or 'l'   The lower triangular part of A is
 33 *                                  supplied in AP.
 34 *
 35 *           Unchanged on exit.
 36 *
 37 *  N      - INTEGER.
 38 *           On entry, N specifies the order of the matrix A.
 39 *           N must be at least zero.
 40 *           Unchanged on exit.
 41 *
 42 *  ALPHA  - COMPLEX         .
 43 *           On entry, ALPHA specifies the scalar alpha.
 44 *           Unchanged on exit.
 45 *
 46 *  AP     - COMPLEX          array of DIMENSION at least
 47 *           ( ( n*( n + 1 ) )/2 ).
 48 *           Before entry with UPLO = 'U' or 'u', the array AP must
 49 *           contain the upper triangular part of the hermitian matrix
 50 *           packed sequentially, column by column, so that AP( 1 )
 51 *           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
 52 *           and a( 2, 2 ) respectively, and so on.
 53 *           Before entry with UPLO = 'L' or 'l', the array AP must
 54 *           contain the lower triangular part of the hermitian matrix
 55 *           packed sequentially, column by column, so that AP( 1 )
 56 *           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
 57 *           and a( 3, 1 ) respectively, and so on.
 58 *           Note that the imaginary parts of the diagonal elements need
 59 *           not be set and are assumed to be zero.
 60 *           Unchanged on exit.
 61 *
 62 *  X      - COMPLEX          array of dimension at least
 63 *           ( 1 + ( n - 1 )*abs( INCX ) ).
 64 *           Before entry, the incremented array X must contain the n
 65 *           element vector x.
 66 *           Unchanged on exit.
 67 *
 68 *  INCX   - INTEGER.
 69 *           On entry, INCX specifies the increment for the elements of
 70 *           X. INCX must not be zero.
 71 *           Unchanged on exit.
 72 *
 73 *  BETA   - COMPLEX         .
 74 *           On entry, BETA specifies the scalar beta. When BETA is
 75 *           supplied as zero then Y need not be set on input.
 76 *           Unchanged on exit.
 77 *
 78 *  Y      - COMPLEX          array of dimension at least
 79 *           ( 1 + ( n - 1 )*abs( INCY ) ).
 80 *           Before entry, the incremented array Y must contain the n
 81 *           element vector y. On exit, Y is overwritten by the updated
 82 *           vector y.
 83 *
 84 *  INCY   - INTEGER.
 85 *           On entry, INCY specifies the increment for the elements of
 86 *           Y. INCY must not be zero.
 87 *           Unchanged on exit.
 88 *
 89 *  Further Details
 90 *  ===============
 91 *
 92 *  Level 2 Blas routine.
 93 *  The vector and matrix arguments are not referenced when N = 0, or M = 0
 94 *
 95 *  -- Written on 22-October-1986.
 96 *     Jack Dongarra, Argonne National Lab.
 97 *     Jeremy Du Croz, Nag Central Office.
 98 *     Sven Hammarling, Nag Central Office.
 99 *     Richard Hanson, Sandia National Labs.
100 *
101 *  =====================================================================
102 *
103 *     .. Parameters ..
104       COMPLEX ONE
105       PARAMETER (ONE= (1.0E+0,0.0E+0))
106       COMPLEX ZERO
107       PARAMETER (ZERO= (0.0E+0,0.0E+0))
108 *     ..
109 *     .. Local Scalars ..
110       COMPLEX TEMP1,TEMP2
111       INTEGER I,INFO,IX,IY,J,JX,JY,K,KK,KX,KY
112 *     ..
113 *     .. External Functions ..
114       LOGICAL LSAME
115       EXTERNAL LSAME
116 *     ..
117 *     .. External Subroutines ..
118       EXTERNAL XERBLA
119 *     ..
120 *     .. Intrinsic Functions ..
121       INTRINSIC CONJG,REAL
122 *     ..
123 *
124 *     Test the input parameters.
125 *
126       INFO = 0
127       IF (.NOT.LSAME(UPLO,'U'.AND. .NOT.LSAME(UPLO,'L')) THEN
128           INFO = 1
129       ELSE IF (N.LT.0THEN
130           INFO = 2
131       ELSE IF (INCX.EQ.0THEN
132           INFO = 6
133       ELSE IF (INCY.EQ.0THEN
134           INFO = 9
135       END IF
136       IF (INFO.NE.0THEN
137           CALL XERBLA('CHPMV ',INFO)
138           RETURN
139       END IF
140 *
141 *     Quick return if possible.
142 *
143       IF ((N.EQ.0.OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
144 *
145 *     Set up the start points in  X  and  Y.
146 *
147       IF (INCX.GT.0THEN
148           KX = 1
149       ELSE
150           KX = 1 - (N-1)*INCX
151       END IF
152       IF (INCY.GT.0THEN
153           KY = 1
154       ELSE
155           KY = 1 - (N-1)*INCY
156       END IF
157 *
158 *     Start the operations. In this version the elements of the array AP
159 *     are accessed sequentially with one pass through AP.
160 *
161 *     First form  y := beta*y.
162 *
163       IF (BETA.NE.ONE) THEN
164           IF (INCY.EQ.1THEN
165               IF (BETA.EQ.ZERO) THEN
166                   DO 10 I = 1,N
167                       Y(I) = ZERO
168    10             CONTINUE
169               ELSE
170                   DO 20 I = 1,N
171                       Y(I) = BETA*Y(I)
172    20             CONTINUE
173               END IF
174           ELSE
175               IY = KY
176               IF (BETA.EQ.ZERO) THEN
177                   DO 30 I = 1,N
178                       Y(IY) = ZERO
179                       IY = IY + INCY
180    30             CONTINUE
181               ELSE
182                   DO 40 I = 1,N
183                       Y(IY) = BETA*Y(IY)
184                       IY = IY + INCY
185    40             CONTINUE
186               END IF
187           END IF
188       END IF
189       IF (ALPHA.EQ.ZERO) RETURN
190       KK = 1
191       IF (LSAME(UPLO,'U')) THEN
192 *
193 *        Form  y  when AP contains the upper triangle.
194 *
195           IF ((INCX.EQ.1.AND. (INCY.EQ.1)) THEN
196               DO 60 J = 1,N
197                   TEMP1 = ALPHA*X(J)
198                   TEMP2 = ZERO
199                   K = KK
200                   DO 50 I = 1,J - 1
201                       Y(I) = Y(I) + TEMP1*AP(K)
202                       TEMP2 = TEMP2 + CONJG(AP(K))*X(I)
203                       K = K + 1
204    50             CONTINUE
205                   Y(J) = Y(J) + TEMP1*REAL(AP(KK+J-1)) + ALPHA*TEMP2
206                   KK = KK + J
207    60         CONTINUE
208           ELSE
209               JX = KX
210               JY = KY
211               DO 80 J = 1,N
212                   TEMP1 = ALPHA*X(JX)
213                   TEMP2 = ZERO
214                   IX = KX
215                   IY = KY
216                   DO 70 K = KK,KK + J - 2
217                       Y(IY) = Y(IY) + TEMP1*AP(K)
218                       TEMP2 = TEMP2 + CONJG(AP(K))*X(IX)
219                       IX = IX + INCX
220                       IY = IY + INCY
221    70             CONTINUE
222                   Y(JY) = Y(JY) + TEMP1*REAL(AP(KK+J-1)) + ALPHA*TEMP2
223                   JX = JX + INCX
224                   JY = JY + INCY
225                   KK = KK + J
226    80         CONTINUE
227           END IF
228       ELSE
229 *
230 *        Form  y  when AP contains the lower triangle.
231 *
232           IF ((INCX.EQ.1.AND. (INCY.EQ.1)) THEN
233               DO 100 J = 1,N
234                   TEMP1 = ALPHA*X(J)
235                   TEMP2 = ZERO
236                   Y(J) = Y(J) + TEMP1*REAL(AP(KK))
237                   K = KK + 1
238                   DO 90 I = J + 1,N
239                       Y(I) = Y(I) + TEMP1*AP(K)
240                       TEMP2 = TEMP2 + CONJG(AP(K))*X(I)
241                       K = K + 1
242    90             CONTINUE
243                   Y(J) = Y(J) + ALPHA*TEMP2
244                   KK = KK + (N-J+1)
245   100         CONTINUE
246           ELSE
247               JX = KX
248               JY = KY
249               DO 120 J = 1,N
250                   TEMP1 = ALPHA*X(JX)
251                   TEMP2 = ZERO
252                   Y(JY) = Y(JY) + TEMP1*REAL(AP(KK))
253                   IX = JX
254                   IY = JY
255                   DO 110 K = KK + 1,KK + N - J
256                       IX = IX + INCX
257                       IY = IY + INCY
258                       Y(IY) = Y(IY) + TEMP1*AP(K)
259                       TEMP2 = TEMP2 + CONJG(AP(K))*X(IX)
260   110             CONTINUE
261                   Y(JY) = Y(JY) + ALPHA*TEMP2
262                   JX = JX + INCX
263                   JY = JY + INCY
264                   KK = KK + (N-J+1)
265   120         CONTINUE
266           END IF
267       END IF
268 *
269       RETURN
270 *
271 *     End of CHPMV .
272 *
273       END