1       SUBROUTINE CHPR(UPLO,N,ALPHA,X,INCX,AP)
  2 *     .. Scalar Arguments ..
  3       REAL ALPHA
  4       INTEGER INCX,N
  5       CHARACTER UPLO
  6 *     ..
  7 *     .. Array Arguments ..
  8       COMPLEX AP(*),X(*)
  9 *     ..
 10 *
 11 *  Purpose
 12 *  =======
 13 *
 14 *  CHPR    performs the hermitian rank 1 operation
 15 *
 16 *     A := alpha*x*x**H + A,
 17 *
 18 *  where alpha is a real scalar, x is an n element vector and A is an
 19 *  n by n hermitian matrix, supplied in packed form.
 20 *
 21 *  Arguments
 22 *  ==========
 23 *
 24 *  UPLO   - CHARACTER*1.
 25 *           On entry, UPLO specifies whether the upper or lower
 26 *           triangular part of the matrix A is supplied in the packed
 27 *           array AP as follows:
 28 *
 29 *              UPLO = 'U' or 'u'   The upper triangular part of A is
 30 *                                  supplied in AP.
 31 *
 32 *              UPLO = 'L' or 'l'   The lower triangular part of A is
 33 *                                  supplied in AP.
 34 *
 35 *           Unchanged on exit.
 36 *
 37 *  N      - INTEGER.
 38 *           On entry, N specifies the order of the matrix A.
 39 *           N must be at least zero.
 40 *           Unchanged on exit.
 41 *
 42 *  ALPHA  - REAL            .
 43 *           On entry, ALPHA specifies the scalar alpha.
 44 *           Unchanged on exit.
 45 *
 46 *  X      - COMPLEX          array of dimension at least
 47 *           ( 1 + ( n - 1 )*abs( INCX ) ).
 48 *           Before entry, the incremented array X must contain the n
 49 *           element vector x.
 50 *           Unchanged on exit.
 51 *
 52 *  INCX   - INTEGER.
 53 *           On entry, INCX specifies the increment for the elements of
 54 *           X. INCX must not be zero.
 55 *           Unchanged on exit.
 56 *
 57 *  AP     - COMPLEX          array of DIMENSION at least
 58 *           ( ( n*( n + 1 ) )/2 ).
 59 *           Before entry with  UPLO = 'U' or 'u', the array AP must
 60 *           contain the upper triangular part of the hermitian matrix
 61 *           packed sequentially, column by column, so that AP( 1 )
 62 *           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
 63 *           and a( 2, 2 ) respectively, and so on. On exit, the array
 64 *           AP is overwritten by the upper triangular part of the
 65 *           updated matrix.
 66 *           Before entry with UPLO = 'L' or 'l', the array AP must
 67 *           contain the lower triangular part of the hermitian matrix
 68 *           packed sequentially, column by column, so that AP( 1 )
 69 *           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
 70 *           and a( 3, 1 ) respectively, and so on. On exit, the array
 71 *           AP is overwritten by the lower triangular part of the
 72 *           updated matrix.
 73 *           Note that the imaginary parts of the diagonal elements need
 74 *           not be set, they are assumed to be zero, and on exit they
 75 *           are set to zero.
 76 *
 77 *  Further Details
 78 *  ===============
 79 *
 80 *  Level 2 Blas routine.
 81 *
 82 *  -- Written on 22-October-1986.
 83 *     Jack Dongarra, Argonne National Lab.
 84 *     Jeremy Du Croz, Nag Central Office.
 85 *     Sven Hammarling, Nag Central Office.
 86 *     Richard Hanson, Sandia National Labs.
 87 *
 88 *  =====================================================================
 89 *
 90 *     .. Parameters ..
 91       COMPLEX ZERO
 92       PARAMETER (ZERO= (0.0E+0,0.0E+0))
 93 *     ..
 94 *     .. Local Scalars ..
 95       COMPLEX TEMP
 96       INTEGER I,INFO,IX,J,JX,K,KK,KX
 97 *     ..
 98 *     .. External Functions ..
 99       LOGICAL LSAME
100       EXTERNAL LSAME
101 *     ..
102 *     .. External Subroutines ..
103       EXTERNAL XERBLA
104 *     ..
105 *     .. Intrinsic Functions ..
106       INTRINSIC CONJG,REAL
107 *     ..
108 *
109 *     Test the input parameters.
110 *
111       INFO = 0
112       IF (.NOT.LSAME(UPLO,'U'.AND. .NOT.LSAME(UPLO,'L')) THEN
113           INFO = 1
114       ELSE IF (N.LT.0THEN
115           INFO = 2
116       ELSE IF (INCX.EQ.0THEN
117           INFO = 5
118       END IF
119       IF (INFO.NE.0THEN
120           CALL XERBLA('CHPR  ',INFO)
121           RETURN
122       END IF
123 *
124 *     Quick return if possible.
125 *
126       IF ((N.EQ.0.OR. (ALPHA.EQ.REAL(ZERO))) RETURN
127 *
128 *     Set the start point in X if the increment is not unity.
129 *
130       IF (INCX.LE.0THEN
131           KX = 1 - (N-1)*INCX
132       ELSE IF (INCX.NE.1THEN
133           KX = 1
134       END IF
135 *
136 *     Start the operations. In this version the elements of the array AP
137 *     are accessed sequentially with one pass through AP.
138 *
139       KK = 1
140       IF (LSAME(UPLO,'U')) THEN
141 *
142 *        Form  A  when upper triangle is stored in AP.
143 *
144           IF (INCX.EQ.1THEN
145               DO 20 J = 1,N
146                   IF (X(J).NE.ZERO) THEN
147                       TEMP = ALPHA*CONJG(X(J))
148                       K = KK
149                       DO 10 I = 1,J - 1
150                           AP(K) = AP(K) + X(I)*TEMP
151                           K = K + 1
152    10                 CONTINUE
153                       AP(KK+J-1= REAL(AP(KK+J-1)) + REAL(X(J)*TEMP)
154                   ELSE
155                       AP(KK+J-1= REAL(AP(KK+J-1))
156                   END IF
157                   KK = KK + J
158    20         CONTINUE
159           ELSE
160               JX = KX
161               DO 40 J = 1,N
162                   IF (X(JX).NE.ZERO) THEN
163                       TEMP = ALPHA*CONJG(X(JX))
164                       IX = KX
165                       DO 30 K = KK,KK + J - 2
166                           AP(K) = AP(K) + X(IX)*TEMP
167                           IX = IX + INCX
168    30                 CONTINUE
169                       AP(KK+J-1= REAL(AP(KK+J-1)) + REAL(X(JX)*TEMP)
170                   ELSE
171                       AP(KK+J-1= REAL(AP(KK+J-1))
172                   END IF
173                   JX = JX + INCX
174                   KK = KK + J
175    40         CONTINUE
176           END IF
177       ELSE
178 *
179 *        Form  A  when lower triangle is stored in AP.
180 *
181           IF (INCX.EQ.1THEN
182               DO 60 J = 1,N
183                   IF (X(J).NE.ZERO) THEN
184                       TEMP = ALPHA*CONJG(X(J))
185                       AP(KK) = REAL(AP(KK)) + REAL(TEMP*X(J))
186                       K = KK + 1
187                       DO 50 I = J + 1,N
188                           AP(K) = AP(K) + X(I)*TEMP
189                           K = K + 1
190    50                 CONTINUE
191                   ELSE
192                       AP(KK) = REAL(AP(KK))
193                   END IF
194                   KK = KK + N - J + 1
195    60         CONTINUE
196           ELSE
197               JX = KX
198               DO 80 J = 1,N
199                   IF (X(JX).NE.ZERO) THEN
200                       TEMP = ALPHA*CONJG(X(JX))
201                       AP(KK) = REAL(AP(KK)) + REAL(TEMP*X(JX))
202                       IX = JX
203                       DO 70 K = KK + 1,KK + N - J
204                           IX = IX + INCX
205                           AP(K) = AP(K) + X(IX)*TEMP
206    70                 CONTINUE
207                   ELSE
208                       AP(KK) = REAL(AP(KK))
209                   END IF
210                   JX = JX + INCX
211                   KK = KK + N - J + 1
212    80         CONTINUE
213           END IF
214       END IF
215 *
216       RETURN
217 *
218 *     End of CHPR  .
219 *
220       END