1 SUBROUTINE CHPR2(UPLO,N,ALPHA,X,INCX,Y,INCY,AP)
2 * .. Scalar Arguments ..
3 COMPLEX ALPHA
4 INTEGER INCX,INCY,N
5 CHARACTER UPLO
6 * ..
7 * .. Array Arguments ..
8 COMPLEX AP(*),X(*),Y(*)
9 * ..
10 *
11 * Purpose
12 * =======
13 *
14 * CHPR2 performs the hermitian rank 2 operation
15 *
16 * A := alpha*x*y**H + conjg( alpha )*y*x**H + A,
17 *
18 * where alpha is a scalar, x and y are n element vectors and A is an
19 * n by n hermitian matrix, supplied in packed form.
20 *
21 * Arguments
22 * ==========
23 *
24 * UPLO - CHARACTER*1.
25 * On entry, UPLO specifies whether the upper or lower
26 * triangular part of the matrix A is supplied in the packed
27 * array AP as follows:
28 *
29 * UPLO = 'U' or 'u' The upper triangular part of A is
30 * supplied in AP.
31 *
32 * UPLO = 'L' or 'l' The lower triangular part of A is
33 * supplied in AP.
34 *
35 * Unchanged on exit.
36 *
37 * N - INTEGER.
38 * On entry, N specifies the order of the matrix A.
39 * N must be at least zero.
40 * Unchanged on exit.
41 *
42 * ALPHA - COMPLEX .
43 * On entry, ALPHA specifies the scalar alpha.
44 * Unchanged on exit.
45 *
46 * X - COMPLEX array of dimension at least
47 * ( 1 + ( n - 1 )*abs( INCX ) ).
48 * Before entry, the incremented array X must contain the n
49 * element vector x.
50 * Unchanged on exit.
51 *
52 * INCX - INTEGER.
53 * On entry, INCX specifies the increment for the elements of
54 * X. INCX must not be zero.
55 * Unchanged on exit.
56 *
57 * Y - COMPLEX array of dimension at least
58 * ( 1 + ( n - 1 )*abs( INCY ) ).
59 * Before entry, the incremented array Y must contain the n
60 * element vector y.
61 * Unchanged on exit.
62 *
63 * INCY - INTEGER.
64 * On entry, INCY specifies the increment for the elements of
65 * Y. INCY must not be zero.
66 * Unchanged on exit.
67 *
68 * AP - COMPLEX array of DIMENSION at least
69 * ( ( n*( n + 1 ) )/2 ).
70 * Before entry with UPLO = 'U' or 'u', the array AP must
71 * contain the upper triangular part of the hermitian matrix
72 * packed sequentially, column by column, so that AP( 1 )
73 * contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
74 * and a( 2, 2 ) respectively, and so on. On exit, the array
75 * AP is overwritten by the upper triangular part of the
76 * updated matrix.
77 * Before entry with UPLO = 'L' or 'l', the array AP must
78 * contain the lower triangular part of the hermitian matrix
79 * packed sequentially, column by column, so that AP( 1 )
80 * contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
81 * and a( 3, 1 ) respectively, and so on. On exit, the array
82 * AP is overwritten by the lower triangular part of the
83 * updated matrix.
84 * Note that the imaginary parts of the diagonal elements need
85 * not be set, they are assumed to be zero, and on exit they
86 * are set to zero.
87 *
88 * Further Details
89 * ===============
90 *
91 * Level 2 Blas routine.
92 *
93 * -- Written on 22-October-1986.
94 * Jack Dongarra, Argonne National Lab.
95 * Jeremy Du Croz, Nag Central Office.
96 * Sven Hammarling, Nag Central Office.
97 * Richard Hanson, Sandia National Labs.
98 *
99 * =====================================================================
100 *
101 * .. Parameters ..
102 COMPLEX ZERO
103 PARAMETER (ZERO= (0.0E+0,0.0E+0))
104 * ..
105 * .. Local Scalars ..
106 COMPLEX TEMP1,TEMP2
107 INTEGER I,INFO,IX,IY,J,JX,JY,K,KK,KX,KY
108 * ..
109 * .. External Functions ..
110 LOGICAL LSAME
111 EXTERNAL LSAME
112 * ..
113 * .. External Subroutines ..
114 EXTERNAL XERBLA
115 * ..
116 * .. Intrinsic Functions ..
117 INTRINSIC CONJG,REAL
118 * ..
119 *
120 * Test the input parameters.
121 *
122 INFO = 0
123 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
124 INFO = 1
125 ELSE IF (N.LT.0) THEN
126 INFO = 2
127 ELSE IF (INCX.EQ.0) THEN
128 INFO = 5
129 ELSE IF (INCY.EQ.0) THEN
130 INFO = 7
131 END IF
132 IF (INFO.NE.0) THEN
133 CALL XERBLA('CHPR2 ',INFO)
134 RETURN
135 END IF
136 *
137 * Quick return if possible.
138 *
139 IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN
140 *
141 * Set up the start points in X and Y if the increments are not both
142 * unity.
143 *
144 IF ((INCX.NE.1) .OR. (INCY.NE.1)) THEN
145 IF (INCX.GT.0) THEN
146 KX = 1
147 ELSE
148 KX = 1 - (N-1)*INCX
149 END IF
150 IF (INCY.GT.0) THEN
151 KY = 1
152 ELSE
153 KY = 1 - (N-1)*INCY
154 END IF
155 JX = KX
156 JY = KY
157 END IF
158 *
159 * Start the operations. In this version the elements of the array AP
160 * are accessed sequentially with one pass through AP.
161 *
162 KK = 1
163 IF (LSAME(UPLO,'U')) THEN
164 *
165 * Form A when upper triangle is stored in AP.
166 *
167 IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
168 DO 20 J = 1,N
169 IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
170 TEMP1 = ALPHA*CONJG(Y(J))
171 TEMP2 = CONJG(ALPHA*X(J))
172 K = KK
173 DO 10 I = 1,J - 1
174 AP(K) = AP(K) + X(I)*TEMP1 + Y(I)*TEMP2
175 K = K + 1
176 10 CONTINUE
177 AP(KK+J-1) = REAL(AP(KK+J-1)) +
178 + REAL(X(J)*TEMP1+Y(J)*TEMP2)
179 ELSE
180 AP(KK+J-1) = REAL(AP(KK+J-1))
181 END IF
182 KK = KK + J
183 20 CONTINUE
184 ELSE
185 DO 40 J = 1,N
186 IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
187 TEMP1 = ALPHA*CONJG(Y(JY))
188 TEMP2 = CONJG(ALPHA*X(JX))
189 IX = KX
190 IY = KY
191 DO 30 K = KK,KK + J - 2
192 AP(K) = AP(K) + X(IX)*TEMP1 + Y(IY)*TEMP2
193 IX = IX + INCX
194 IY = IY + INCY
195 30 CONTINUE
196 AP(KK+J-1) = REAL(AP(KK+J-1)) +
197 + REAL(X(JX)*TEMP1+Y(JY)*TEMP2)
198 ELSE
199 AP(KK+J-1) = REAL(AP(KK+J-1))
200 END IF
201 JX = JX + INCX
202 JY = JY + INCY
203 KK = KK + J
204 40 CONTINUE
205 END IF
206 ELSE
207 *
208 * Form A when lower triangle is stored in AP.
209 *
210 IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
211 DO 60 J = 1,N
212 IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
213 TEMP1 = ALPHA*CONJG(Y(J))
214 TEMP2 = CONJG(ALPHA*X(J))
215 AP(KK) = REAL(AP(KK)) +
216 + REAL(X(J)*TEMP1+Y(J)*TEMP2)
217 K = KK + 1
218 DO 50 I = J + 1,N
219 AP(K) = AP(K) + X(I)*TEMP1 + Y(I)*TEMP2
220 K = K + 1
221 50 CONTINUE
222 ELSE
223 AP(KK) = REAL(AP(KK))
224 END IF
225 KK = KK + N - J + 1
226 60 CONTINUE
227 ELSE
228 DO 80 J = 1,N
229 IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
230 TEMP1 = ALPHA*CONJG(Y(JY))
231 TEMP2 = CONJG(ALPHA*X(JX))
232 AP(KK) = REAL(AP(KK)) +
233 + REAL(X(JX)*TEMP1+Y(JY)*TEMP2)
234 IX = JX
235 IY = JY
236 DO 70 K = KK + 1,KK + N - J
237 IX = IX + INCX
238 IY = IY + INCY
239 AP(K) = AP(K) + X(IX)*TEMP1 + Y(IY)*TEMP2
240 70 CONTINUE
241 ELSE
242 AP(KK) = REAL(AP(KK))
243 END IF
244 JX = JX + INCX
245 JY = JY + INCY
246 KK = KK + N - J + 1
247 80 CONTINUE
248 END IF
249 END IF
250 *
251 RETURN
252 *
253 * End of CHPR2 .
254 *
255 END
2 * .. Scalar Arguments ..
3 COMPLEX ALPHA
4 INTEGER INCX,INCY,N
5 CHARACTER UPLO
6 * ..
7 * .. Array Arguments ..
8 COMPLEX AP(*),X(*),Y(*)
9 * ..
10 *
11 * Purpose
12 * =======
13 *
14 * CHPR2 performs the hermitian rank 2 operation
15 *
16 * A := alpha*x*y**H + conjg( alpha )*y*x**H + A,
17 *
18 * where alpha is a scalar, x and y are n element vectors and A is an
19 * n by n hermitian matrix, supplied in packed form.
20 *
21 * Arguments
22 * ==========
23 *
24 * UPLO - CHARACTER*1.
25 * On entry, UPLO specifies whether the upper or lower
26 * triangular part of the matrix A is supplied in the packed
27 * array AP as follows:
28 *
29 * UPLO = 'U' or 'u' The upper triangular part of A is
30 * supplied in AP.
31 *
32 * UPLO = 'L' or 'l' The lower triangular part of A is
33 * supplied in AP.
34 *
35 * Unchanged on exit.
36 *
37 * N - INTEGER.
38 * On entry, N specifies the order of the matrix A.
39 * N must be at least zero.
40 * Unchanged on exit.
41 *
42 * ALPHA - COMPLEX .
43 * On entry, ALPHA specifies the scalar alpha.
44 * Unchanged on exit.
45 *
46 * X - COMPLEX array of dimension at least
47 * ( 1 + ( n - 1 )*abs( INCX ) ).
48 * Before entry, the incremented array X must contain the n
49 * element vector x.
50 * Unchanged on exit.
51 *
52 * INCX - INTEGER.
53 * On entry, INCX specifies the increment for the elements of
54 * X. INCX must not be zero.
55 * Unchanged on exit.
56 *
57 * Y - COMPLEX array of dimension at least
58 * ( 1 + ( n - 1 )*abs( INCY ) ).
59 * Before entry, the incremented array Y must contain the n
60 * element vector y.
61 * Unchanged on exit.
62 *
63 * INCY - INTEGER.
64 * On entry, INCY specifies the increment for the elements of
65 * Y. INCY must not be zero.
66 * Unchanged on exit.
67 *
68 * AP - COMPLEX array of DIMENSION at least
69 * ( ( n*( n + 1 ) )/2 ).
70 * Before entry with UPLO = 'U' or 'u', the array AP must
71 * contain the upper triangular part of the hermitian matrix
72 * packed sequentially, column by column, so that AP( 1 )
73 * contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
74 * and a( 2, 2 ) respectively, and so on. On exit, the array
75 * AP is overwritten by the upper triangular part of the
76 * updated matrix.
77 * Before entry with UPLO = 'L' or 'l', the array AP must
78 * contain the lower triangular part of the hermitian matrix
79 * packed sequentially, column by column, so that AP( 1 )
80 * contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
81 * and a( 3, 1 ) respectively, and so on. On exit, the array
82 * AP is overwritten by the lower triangular part of the
83 * updated matrix.
84 * Note that the imaginary parts of the diagonal elements need
85 * not be set, they are assumed to be zero, and on exit they
86 * are set to zero.
87 *
88 * Further Details
89 * ===============
90 *
91 * Level 2 Blas routine.
92 *
93 * -- Written on 22-October-1986.
94 * Jack Dongarra, Argonne National Lab.
95 * Jeremy Du Croz, Nag Central Office.
96 * Sven Hammarling, Nag Central Office.
97 * Richard Hanson, Sandia National Labs.
98 *
99 * =====================================================================
100 *
101 * .. Parameters ..
102 COMPLEX ZERO
103 PARAMETER (ZERO= (0.0E+0,0.0E+0))
104 * ..
105 * .. Local Scalars ..
106 COMPLEX TEMP1,TEMP2
107 INTEGER I,INFO,IX,IY,J,JX,JY,K,KK,KX,KY
108 * ..
109 * .. External Functions ..
110 LOGICAL LSAME
111 EXTERNAL LSAME
112 * ..
113 * .. External Subroutines ..
114 EXTERNAL XERBLA
115 * ..
116 * .. Intrinsic Functions ..
117 INTRINSIC CONJG,REAL
118 * ..
119 *
120 * Test the input parameters.
121 *
122 INFO = 0
123 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
124 INFO = 1
125 ELSE IF (N.LT.0) THEN
126 INFO = 2
127 ELSE IF (INCX.EQ.0) THEN
128 INFO = 5
129 ELSE IF (INCY.EQ.0) THEN
130 INFO = 7
131 END IF
132 IF (INFO.NE.0) THEN
133 CALL XERBLA('CHPR2 ',INFO)
134 RETURN
135 END IF
136 *
137 * Quick return if possible.
138 *
139 IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN
140 *
141 * Set up the start points in X and Y if the increments are not both
142 * unity.
143 *
144 IF ((INCX.NE.1) .OR. (INCY.NE.1)) THEN
145 IF (INCX.GT.0) THEN
146 KX = 1
147 ELSE
148 KX = 1 - (N-1)*INCX
149 END IF
150 IF (INCY.GT.0) THEN
151 KY = 1
152 ELSE
153 KY = 1 - (N-1)*INCY
154 END IF
155 JX = KX
156 JY = KY
157 END IF
158 *
159 * Start the operations. In this version the elements of the array AP
160 * are accessed sequentially with one pass through AP.
161 *
162 KK = 1
163 IF (LSAME(UPLO,'U')) THEN
164 *
165 * Form A when upper triangle is stored in AP.
166 *
167 IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
168 DO 20 J = 1,N
169 IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
170 TEMP1 = ALPHA*CONJG(Y(J))
171 TEMP2 = CONJG(ALPHA*X(J))
172 K = KK
173 DO 10 I = 1,J - 1
174 AP(K) = AP(K) + X(I)*TEMP1 + Y(I)*TEMP2
175 K = K + 1
176 10 CONTINUE
177 AP(KK+J-1) = REAL(AP(KK+J-1)) +
178 + REAL(X(J)*TEMP1+Y(J)*TEMP2)
179 ELSE
180 AP(KK+J-1) = REAL(AP(KK+J-1))
181 END IF
182 KK = KK + J
183 20 CONTINUE
184 ELSE
185 DO 40 J = 1,N
186 IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
187 TEMP1 = ALPHA*CONJG(Y(JY))
188 TEMP2 = CONJG(ALPHA*X(JX))
189 IX = KX
190 IY = KY
191 DO 30 K = KK,KK + J - 2
192 AP(K) = AP(K) + X(IX)*TEMP1 + Y(IY)*TEMP2
193 IX = IX + INCX
194 IY = IY + INCY
195 30 CONTINUE
196 AP(KK+J-1) = REAL(AP(KK+J-1)) +
197 + REAL(X(JX)*TEMP1+Y(JY)*TEMP2)
198 ELSE
199 AP(KK+J-1) = REAL(AP(KK+J-1))
200 END IF
201 JX = JX + INCX
202 JY = JY + INCY
203 KK = KK + J
204 40 CONTINUE
205 END IF
206 ELSE
207 *
208 * Form A when lower triangle is stored in AP.
209 *
210 IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
211 DO 60 J = 1,N
212 IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
213 TEMP1 = ALPHA*CONJG(Y(J))
214 TEMP2 = CONJG(ALPHA*X(J))
215 AP(KK) = REAL(AP(KK)) +
216 + REAL(X(J)*TEMP1+Y(J)*TEMP2)
217 K = KK + 1
218 DO 50 I = J + 1,N
219 AP(K) = AP(K) + X(I)*TEMP1 + Y(I)*TEMP2
220 K = K + 1
221 50 CONTINUE
222 ELSE
223 AP(KK) = REAL(AP(KK))
224 END IF
225 KK = KK + N - J + 1
226 60 CONTINUE
227 ELSE
228 DO 80 J = 1,N
229 IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
230 TEMP1 = ALPHA*CONJG(Y(JY))
231 TEMP2 = CONJG(ALPHA*X(JX))
232 AP(KK) = REAL(AP(KK)) +
233 + REAL(X(JX)*TEMP1+Y(JY)*TEMP2)
234 IX = JX
235 IY = JY
236 DO 70 K = KK + 1,KK + N - J
237 IX = IX + INCX
238 IY = IY + INCY
239 AP(K) = AP(K) + X(IX)*TEMP1 + Y(IY)*TEMP2
240 70 CONTINUE
241 ELSE
242 AP(KK) = REAL(AP(KK))
243 END IF
244 JX = JX + INCX
245 JY = JY + INCY
246 KK = KK + N - J + 1
247 80 CONTINUE
248 END IF
249 END IF
250 *
251 RETURN
252 *
253 * End of CHPR2 .
254 *
255 END