1       SUBROUTINE CSYMM(SIDE,UPLO,M,N,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
  2 *     .. Scalar Arguments ..
  3       COMPLEX ALPHA,BETA
  4       INTEGER LDA,LDB,LDC,M,N
  5       CHARACTER SIDE,UPLO
  6 *     ..
  7 *     .. Array Arguments ..
  8       COMPLEX A(LDA,*),B(LDB,*),C(LDC,*)
  9 *     ..
 10 *
 11 *  Purpose
 12 *  =======
 13 *
 14 *  CSYMM  performs one of the matrix-matrix operations
 15 *
 16 *     C := alpha*A*B + beta*C,
 17 *
 18 *  or
 19 *
 20 *     C := alpha*B*A + beta*C,
 21 *
 22 *  where  alpha and beta are scalars, A is a symmetric matrix and  B and
 23 *  C are m by n matrices.
 24 *
 25 *  Arguments
 26 *  ==========
 27 *
 28 *  SIDE   - CHARACTER*1.
 29 *           On entry,  SIDE  specifies whether  the  symmetric matrix  A
 30 *           appears on the  left or right  in the  operation as follows:
 31 *
 32 *              SIDE = 'L' or 'l'   C := alpha*A*B + beta*C,
 33 *
 34 *              SIDE = 'R' or 'r'   C := alpha*B*A + beta*C,
 35 *
 36 *           Unchanged on exit.
 37 *
 38 *  UPLO   - CHARACTER*1.
 39 *           On  entry,   UPLO  specifies  whether  the  upper  or  lower
 40 *           triangular  part  of  the  symmetric  matrix   A  is  to  be
 41 *           referenced as follows:
 42 *
 43 *              UPLO = 'U' or 'u'   Only the upper triangular part of the
 44 *                                  symmetric matrix is to be referenced.
 45 *
 46 *              UPLO = 'L' or 'l'   Only the lower triangular part of the
 47 *                                  symmetric matrix is to be referenced.
 48 *
 49 *           Unchanged on exit.
 50 *
 51 *  M      - INTEGER.
 52 *           On entry,  M  specifies the number of rows of the matrix  C.
 53 *           M  must be at least zero.
 54 *           Unchanged on exit.
 55 *
 56 *  N      - INTEGER.
 57 *           On entry, N specifies the number of columns of the matrix C.
 58 *           N  must be at least zero.
 59 *           Unchanged on exit.
 60 *
 61 *  ALPHA  - COMPLEX         .
 62 *           On entry, ALPHA specifies the scalar alpha.
 63 *           Unchanged on exit.
 64 *
 65 *  A      - COMPLEX          array of DIMENSION ( LDA, ka ), where ka is
 66 *           m  when  SIDE = 'L' or 'l'  and is n  otherwise.
 67 *           Before entry  with  SIDE = 'L' or 'l',  the  m by m  part of
 68 *           the array  A  must contain the  symmetric matrix,  such that
 69 *           when  UPLO = 'U' or 'u', the leading m by m upper triangular
 70 *           part of the array  A  must contain the upper triangular part
 71 *           of the  symmetric matrix and the  strictly  lower triangular
 72 *           part of  A  is not referenced,  and when  UPLO = 'L' or 'l',
 73 *           the leading  m by m  lower triangular part  of the  array  A
 74 *           must  contain  the  lower triangular part  of the  symmetric
 75 *           matrix and the  strictly upper triangular part of  A  is not
 76 *           referenced.
 77 *           Before entry  with  SIDE = 'R' or 'r',  the  n by n  part of
 78 *           the array  A  must contain the  symmetric matrix,  such that
 79 *           when  UPLO = 'U' or 'u', the leading n by n upper triangular
 80 *           part of the array  A  must contain the upper triangular part
 81 *           of the  symmetric matrix and the  strictly  lower triangular
 82 *           part of  A  is not referenced,  and when  UPLO = 'L' or 'l',
 83 *           the leading  n by n  lower triangular part  of the  array  A
 84 *           must  contain  the  lower triangular part  of the  symmetric
 85 *           matrix and the  strictly upper triangular part of  A  is not
 86 *           referenced.
 87 *           Unchanged on exit.
 88 *
 89 *  LDA    - INTEGER.
 90 *           On entry, LDA specifies the first dimension of A as declared
 91 *           in the  calling (sub) program. When  SIDE = 'L' or 'l'  then
 92 *           LDA must be at least  max( 1, m ), otherwise  LDA must be at
 93 *           least max( 1, n ).
 94 *           Unchanged on exit.
 95 *
 96 *  B      - COMPLEX          array of DIMENSION ( LDB, n ).
 97 *           Before entry, the leading  m by n part of the array  B  must
 98 *           contain the matrix B.
 99 *           Unchanged on exit.
100 *
101 *  LDB    - INTEGER.
102 *           On entry, LDB specifies the first dimension of B as declared
103 *           in  the  calling  (sub)  program.   LDB  must  be  at  least
104 *           max( 1, m ).
105 *           Unchanged on exit.
106 *
107 *  BETA   - COMPLEX         .
108 *           On entry,  BETA  specifies the scalar  beta.  When  BETA  is
109 *           supplied as zero then C need not be set on input.
110 *           Unchanged on exit.
111 *
112 *  C      - COMPLEX          array of DIMENSION ( LDC, n ).
113 *           Before entry, the leading  m by n  part of the array  C must
114 *           contain the matrix  C,  except when  beta  is zero, in which
115 *           case C need not be set on entry.
116 *           On exit, the array  C  is overwritten by the  m by n updated
117 *           matrix.
118 *
119 *  LDC    - INTEGER.
120 *           On entry, LDC specifies the first dimension of C as declared
121 *           in  the  calling  (sub)  program.   LDC  must  be  at  least
122 *           max( 1, m ).
123 *           Unchanged on exit.
124 *
125 *  Further Details
126 *  ===============
127 *
128 *  Level 3 Blas routine.
129 *
130 *  -- Written on 8-February-1989.
131 *     Jack Dongarra, Argonne National Laboratory.
132 *     Iain Duff, AERE Harwell.
133 *     Jeremy Du Croz, Numerical Algorithms Group Ltd.
134 *     Sven Hammarling, Numerical Algorithms Group Ltd.
135 *
136 *  =====================================================================
137 *
138 *     .. External Functions ..
139       LOGICAL LSAME
140       EXTERNAL LSAME
141 *     ..
142 *     .. External Subroutines ..
143       EXTERNAL XERBLA
144 *     ..
145 *     .. Intrinsic Functions ..
146       INTRINSIC MAX
147 *     ..
148 *     .. Local Scalars ..
149       COMPLEX TEMP1,TEMP2
150       INTEGER I,INFO,J,K,NROWA
151       LOGICAL UPPER
152 *     ..
153 *     .. Parameters ..
154       COMPLEX ONE
155       PARAMETER (ONE= (1.0E+0,0.0E+0))
156       COMPLEX ZERO
157       PARAMETER (ZERO= (0.0E+0,0.0E+0))
158 *     ..
159 *
160 *     Set NROWA as the number of rows of A.
161 *
162       IF (LSAME(SIDE,'L')) THEN
163           NROWA = M
164       ELSE
165           NROWA = N
166       END IF
167       UPPER = LSAME(UPLO,'U')
168 *
169 *     Test the input parameters.
170 *
171       INFO = 0
172       IF ((.NOT.LSAME(SIDE,'L')) .AND. (.NOT.LSAME(SIDE,'R'))) THEN
173           INFO = 1
174       ELSE IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN
175           INFO = 2
176       ELSE IF (M.LT.0THEN
177           INFO = 3
178       ELSE IF (N.LT.0THEN
179           INFO = 4
180       ELSE IF (LDA.LT.MAX(1,NROWA)) THEN
181           INFO = 7
182       ELSE IF (LDB.LT.MAX(1,M)) THEN
183           INFO = 9
184       ELSE IF (LDC.LT.MAX(1,M)) THEN
185           INFO = 12
186       END IF
187       IF (INFO.NE.0THEN
188           CALL XERBLA('CSYMM ',INFO)
189           RETURN
190       END IF
191 *
192 *     Quick return if possible.
193 *
194       IF ((M.EQ.0.OR. (N.EQ.0.OR.
195      +    ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
196 *
197 *     And when  alpha.eq.zero.
198 *
199       IF (ALPHA.EQ.ZERO) THEN
200           IF (BETA.EQ.ZERO) THEN
201               DO 20 J = 1,N
202                   DO 10 I = 1,M
203                       C(I,J) = ZERO
204    10             CONTINUE
205    20         CONTINUE
206           ELSE
207               DO 40 J = 1,N
208                   DO 30 I = 1,M
209                       C(I,J) = BETA*C(I,J)
210    30             CONTINUE
211    40         CONTINUE
212           END IF
213           RETURN
214       END IF
215 *
216 *     Start the operations.
217 *
218       IF (LSAME(SIDE,'L')) THEN
219 *
220 *        Form  C := alpha*A*B + beta*C.
221 *
222           IF (UPPER) THEN
223               DO 70 J = 1,N
224                   DO 60 I = 1,M
225                       TEMP1 = ALPHA*B(I,J)
226                       TEMP2 = ZERO
227                       DO 50 K = 1,I - 1
228                           C(K,J) = C(K,J) + TEMP1*A(K,I)
229                           TEMP2 = TEMP2 + B(K,J)*A(K,I)
230    50                 CONTINUE
231                       IF (BETA.EQ.ZERO) THEN
232                           C(I,J) = TEMP1*A(I,I) + ALPHA*TEMP2
233                       ELSE
234                           C(I,J) = BETA*C(I,J) + TEMP1*A(I,I) +
235      +                             ALPHA*TEMP2
236                       END IF
237    60             CONTINUE
238    70         CONTINUE
239           ELSE
240               DO 100 J = 1,N
241                   DO 90 I = M,1,-1
242                       TEMP1 = ALPHA*B(I,J)
243                       TEMP2 = ZERO
244                       DO 80 K = I + 1,M
245                           C(K,J) = C(K,J) + TEMP1*A(K,I)
246                           TEMP2 = TEMP2 + B(K,J)*A(K,I)
247    80                 CONTINUE
248                       IF (BETA.EQ.ZERO) THEN
249                           C(I,J) = TEMP1*A(I,I) + ALPHA*TEMP2
250                       ELSE
251                           C(I,J) = BETA*C(I,J) + TEMP1*A(I,I) +
252      +                             ALPHA*TEMP2
253                       END IF
254    90             CONTINUE
255   100         CONTINUE
256           END IF
257       ELSE
258 *
259 *        Form  C := alpha*B*A + beta*C.
260 *
261           DO 170 J = 1,N
262               TEMP1 = ALPHA*A(J,J)
263               IF (BETA.EQ.ZERO) THEN
264                   DO 110 I = 1,M
265                       C(I,J) = TEMP1*B(I,J)
266   110             CONTINUE
267               ELSE
268                   DO 120 I = 1,M
269                       C(I,J) = BETA*C(I,J) + TEMP1*B(I,J)
270   120             CONTINUE
271               END IF
272               DO 140 K = 1,J - 1
273                   IF (UPPER) THEN
274                       TEMP1 = ALPHA*A(K,J)
275                   ELSE
276                       TEMP1 = ALPHA*A(J,K)
277                   END IF
278                   DO 130 I = 1,M
279                       C(I,J) = C(I,J) + TEMP1*B(I,K)
280   130             CONTINUE
281   140         CONTINUE
282               DO 160 K = J + 1,N
283                   IF (UPPER) THEN
284                       TEMP1 = ALPHA*A(J,K)
285                   ELSE
286                       TEMP1 = ALPHA*A(K,J)
287                   END IF
288                   DO 150 I = 1,M
289                       C(I,J) = C(I,J) + TEMP1*B(I,K)
290   150             CONTINUE
291   160         CONTINUE
292   170     CONTINUE
293       END IF
294 *
295       RETURN
296 *
297 *     End of CSYMM .
298 *
299       END