1       SUBROUTINE CTPSV(UPLO,TRANS,DIAG,N,AP,X,INCX)
  2 *     .. Scalar Arguments ..
  3       INTEGER INCX,N
  4       CHARACTER DIAG,TRANS,UPLO
  5 *     ..
  6 *     .. Array Arguments ..
  7       COMPLEX AP(*),X(*)
  8 *     ..
  9 *
 10 *  Purpose
 11 *  =======
 12 *
 13 *  CTPSV  solves one of the systems of equations
 14 *
 15 *     A*x = b,   or   A**T*x = b,   or   A**H*x = b,
 16 *
 17 *  where b and x are n element vectors and A is an n by n unit, or
 18 *  non-unit, upper or lower triangular matrix, supplied in packed form.
 19 *
 20 *  No test for singularity or near-singularity is included in this
 21 *  routine. Such tests must be performed before calling this routine.
 22 *
 23 *  Arguments
 24 *  ==========
 25 *
 26 *  UPLO   - CHARACTER*1.
 27 *           On entry, UPLO specifies whether the matrix is an upper or
 28 *           lower triangular matrix as follows:
 29 *
 30 *              UPLO = 'U' or 'u'   A is an upper triangular matrix.
 31 *
 32 *              UPLO = 'L' or 'l'   A is a lower triangular matrix.
 33 *
 34 *           Unchanged on exit.
 35 *
 36 *  TRANS  - CHARACTER*1.
 37 *           On entry, TRANS specifies the equations to be solved as
 38 *           follows:
 39 *
 40 *              TRANS = 'N' or 'n'   A*x = b.
 41 *
 42 *              TRANS = 'T' or 't'   A**T*x = b.
 43 *
 44 *              TRANS = 'C' or 'c'   A**H*x = b.
 45 *
 46 *           Unchanged on exit.
 47 *
 48 *  DIAG   - CHARACTER*1.
 49 *           On entry, DIAG specifies whether or not A is unit
 50 *           triangular as follows:
 51 *
 52 *              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
 53 *
 54 *              DIAG = 'N' or 'n'   A is not assumed to be unit
 55 *                                  triangular.
 56 *
 57 *           Unchanged on exit.
 58 *
 59 *  N      - INTEGER.
 60 *           On entry, N specifies the order of the matrix A.
 61 *           N must be at least zero.
 62 *           Unchanged on exit.
 63 *
 64 *  AP     - COMPLEX          array of DIMENSION at least
 65 *           ( ( n*( n + 1 ) )/2 ).
 66 *           Before entry with  UPLO = 'U' or 'u', the array AP must
 67 *           contain the upper triangular matrix packed sequentially,
 68 *           column by column, so that AP( 1 ) contains a( 1, 1 ),
 69 *           AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 )
 70 *           respectively, and so on.
 71 *           Before entry with UPLO = 'L' or 'l', the array AP must
 72 *           contain the lower triangular matrix packed sequentially,
 73 *           column by column, so that AP( 1 ) contains a( 1, 1 ),
 74 *           AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 )
 75 *           respectively, and so on.
 76 *           Note that when  DIAG = 'U' or 'u', the diagonal elements of
 77 *           A are not referenced, but are assumed to be unity.
 78 *           Unchanged on exit.
 79 *
 80 *  X      - COMPLEX          array of dimension at least
 81 *           ( 1 + ( n - 1 )*abs( INCX ) ).
 82 *           Before entry, the incremented array X must contain the n
 83 *           element right-hand side vector b. On exit, X is overwritten
 84 *           with the solution vector x.
 85 *
 86 *  INCX   - INTEGER.
 87 *           On entry, INCX specifies the increment for the elements of
 88 *           X. INCX must not be zero.
 89 *           Unchanged on exit.
 90 *
 91 *  Further Details
 92 *  ===============
 93 *
 94 *  Level 2 Blas routine.
 95 *
 96 *  -- Written on 22-October-1986.
 97 *     Jack Dongarra, Argonne National Lab.
 98 *     Jeremy Du Croz, Nag Central Office.
 99 *     Sven Hammarling, Nag Central Office.
100 *     Richard Hanson, Sandia National Labs.
101 *
102 *  =====================================================================
103 *
104 *     .. Parameters ..
105       COMPLEX ZERO
106       PARAMETER (ZERO= (0.0E+0,0.0E+0))
107 *     ..
108 *     .. Local Scalars ..
109       COMPLEX TEMP
110       INTEGER I,INFO,IX,J,JX,K,KK,KX
111       LOGICAL NOCONJ,NOUNIT
112 *     ..
113 *     .. External Functions ..
114       LOGICAL LSAME
115       EXTERNAL LSAME
116 *     ..
117 *     .. External Subroutines ..
118       EXTERNAL XERBLA
119 *     ..
120 *     .. Intrinsic Functions ..
121       INTRINSIC CONJG
122 *     ..
123 *
124 *     Test the input parameters.
125 *
126       INFO = 0
127       IF (.NOT.LSAME(UPLO,'U'.AND. .NOT.LSAME(UPLO,'L')) THEN
128           INFO = 1
129       ELSE IF (.NOT.LSAME(TRANS,'N'.AND. .NOT.LSAME(TRANS,'T'.AND.
130      +         .NOT.LSAME(TRANS,'C')) THEN
131           INFO = 2
132       ELSE IF (.NOT.LSAME(DIAG,'U'.AND. .NOT.LSAME(DIAG,'N')) THEN
133           INFO = 3
134       ELSE IF (N.LT.0THEN
135           INFO = 4
136       ELSE IF (INCX.EQ.0THEN
137           INFO = 7
138       END IF
139       IF (INFO.NE.0THEN
140           CALL XERBLA('CTPSV ',INFO)
141           RETURN
142       END IF
143 *
144 *     Quick return if possible.
145 *
146       IF (N.EQ.0RETURN
147 *
148       NOCONJ = LSAME(TRANS,'T')
149       NOUNIT = LSAME(DIAG,'N')
150 *
151 *     Set up the start point in X if the increment is not unity. This
152 *     will be  ( N - 1 )*INCX  too small for descending loops.
153 *
154       IF (INCX.LE.0THEN
155           KX = 1 - (N-1)*INCX
156       ELSE IF (INCX.NE.1THEN
157           KX = 1
158       END IF
159 *
160 *     Start the operations. In this version the elements of AP are
161 *     accessed sequentially with one pass through AP.
162 *
163       IF (LSAME(TRANS,'N')) THEN
164 *
165 *        Form  x := inv( A )*x.
166 *
167           IF (LSAME(UPLO,'U')) THEN
168               KK = (N* (N+1))/2
169               IF (INCX.EQ.1THEN
170                   DO 20 J = N,1,-1
171                       IF (X(J).NE.ZERO) THEN
172                           IF (NOUNIT) X(J) = X(J)/AP(KK)
173                           TEMP = X(J)
174                           K = KK - 1
175                           DO 10 I = J - 1,1,-1
176                               X(I) = X(I) - TEMP*AP(K)
177                               K = K - 1
178    10                     CONTINUE
179                       END IF
180                       KK = KK - J
181    20             CONTINUE
182               ELSE
183                   JX = KX + (N-1)*INCX
184                   DO 40 J = N,1,-1
185                       IF (X(JX).NE.ZERO) THEN
186                           IF (NOUNIT) X(JX) = X(JX)/AP(KK)
187                           TEMP = X(JX)
188                           IX = JX
189                           DO 30 K = KK - 1,KK - J + 1,-1
190                               IX = IX - INCX
191                               X(IX) = X(IX) - TEMP*AP(K)
192    30                     CONTINUE
193                       END IF
194                       JX = JX - INCX
195                       KK = KK - J
196    40             CONTINUE
197               END IF
198           ELSE
199               KK = 1
200               IF (INCX.EQ.1THEN
201                   DO 60 J = 1,N
202                       IF (X(J).NE.ZERO) THEN
203                           IF (NOUNIT) X(J) = X(J)/AP(KK)
204                           TEMP = X(J)
205                           K = KK + 1
206                           DO 50 I = J + 1,N
207                               X(I) = X(I) - TEMP*AP(K)
208                               K = K + 1
209    50                     CONTINUE
210                       END IF
211                       KK = KK + (N-J+1)
212    60             CONTINUE
213               ELSE
214                   JX = KX
215                   DO 80 J = 1,N
216                       IF (X(JX).NE.ZERO) THEN
217                           IF (NOUNIT) X(JX) = X(JX)/AP(KK)
218                           TEMP = X(JX)
219                           IX = JX
220                           DO 70 K = KK + 1,KK + N - J
221                               IX = IX + INCX
222                               X(IX) = X(IX) - TEMP*AP(K)
223    70                     CONTINUE
224                       END IF
225                       JX = JX + INCX
226                       KK = KK + (N-J+1)
227    80             CONTINUE
228               END IF
229           END IF
230       ELSE
231 *
232 *        Form  x := inv( A**T )*x  or  x := inv( A**H )*x.
233 *
234           IF (LSAME(UPLO,'U')) THEN
235               KK = 1
236               IF (INCX.EQ.1THEN
237                   DO 110 J = 1,N
238                       TEMP = X(J)
239                       K = KK
240                       IF (NOCONJ) THEN
241                           DO 90 I = 1,J - 1
242                               TEMP = TEMP - AP(K)*X(I)
243                               K = K + 1
244    90                     CONTINUE
245                           IF (NOUNIT) TEMP = TEMP/AP(KK+J-1)
246                       ELSE
247                           DO 100 I = 1,J - 1
248                               TEMP = TEMP - CONJG(AP(K))*X(I)
249                               K = K + 1
250   100                     CONTINUE
251                           IF (NOUNIT) TEMP = TEMP/CONJG(AP(KK+J-1))
252                       END IF
253                       X(J) = TEMP
254                       KK = KK + J
255   110             CONTINUE
256               ELSE
257                   JX = KX
258                   DO 140 J = 1,N
259                       TEMP = X(JX)
260                       IX = KX
261                       IF (NOCONJ) THEN
262                           DO 120 K = KK,KK + J - 2
263                               TEMP = TEMP - AP(K)*X(IX)
264                               IX = IX + INCX
265   120                     CONTINUE
266                           IF (NOUNIT) TEMP = TEMP/AP(KK+J-1)
267                       ELSE
268                           DO 130 K = KK,KK + J - 2
269                               TEMP = TEMP - CONJG(AP(K))*X(IX)
270                               IX = IX + INCX
271   130                     CONTINUE
272                           IF (NOUNIT) TEMP = TEMP/CONJG(AP(KK+J-1))
273                       END IF
274                       X(JX) = TEMP
275                       JX = JX + INCX
276                       KK = KK + J
277   140             CONTINUE
278               END IF
279           ELSE
280               KK = (N* (N+1))/2
281               IF (INCX.EQ.1THEN
282                   DO 170 J = N,1,-1
283                       TEMP = X(J)
284                       K = KK
285                       IF (NOCONJ) THEN
286                           DO 150 I = N,J + 1,-1
287                               TEMP = TEMP - AP(K)*X(I)
288                               K = K - 1
289   150                     CONTINUE
290                           IF (NOUNIT) TEMP = TEMP/AP(KK-N+J)
291                       ELSE
292                           DO 160 I = N,J + 1,-1
293                               TEMP = TEMP - CONJG(AP(K))*X(I)
294                               K = K - 1
295   160                     CONTINUE
296                           IF (NOUNIT) TEMP = TEMP/CONJG(AP(KK-N+J))
297                       END IF
298                       X(J) = TEMP
299                       KK = KK - (N-J+1)
300   170             CONTINUE
301               ELSE
302                   KX = KX + (N-1)*INCX
303                   JX = KX
304                   DO 200 J = N,1,-1
305                       TEMP = X(JX)
306                       IX = KX
307                       IF (NOCONJ) THEN
308                           DO 180 K = KK,KK - (N- (J+1)),-1
309                               TEMP = TEMP - AP(K)*X(IX)
310                               IX = IX - INCX
311   180                     CONTINUE
312                           IF (NOUNIT) TEMP = TEMP/AP(KK-N+J)
313                       ELSE
314                           DO 190 K = KK,KK - (N- (J+1)),-1
315                               TEMP = TEMP - CONJG(AP(K))*X(IX)
316                               IX = IX - INCX
317   190                     CONTINUE
318                           IF (NOUNIT) TEMP = TEMP/CONJG(AP(KK-N+J))
319                       END IF
320                       X(JX) = TEMP
321                       JX = JX - INCX
322                       KK = KK - (N-J+1)
323   200             CONTINUE
324               END IF
325           END IF
326       END IF
327 *
328       RETURN
329 *
330 *     End of CTPSV .
331 *
332       END