1       SUBROUTINE CTRMV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX)
  2 *     .. Scalar Arguments ..
  3       INTEGER INCX,LDA,N
  4       CHARACTER DIAG,TRANS,UPLO
  5 *     ..
  6 *     .. Array Arguments ..
  7       COMPLEX A(LDA,*),X(*)
  8 *     ..
  9 *
 10 *  Purpose
 11 *  =======
 12 *
 13 *  CTRMV  performs one of the matrix-vector operations
 14 *
 15 *     x := A*x,   or   x := A**T*x,   or   x := A**H*x,
 16 *
 17 *  where x is an n element vector and  A is an n by n unit, or non-unit,
 18 *  upper or lower triangular matrix.
 19 *
 20 *  Arguments
 21 *  ==========
 22 *
 23 *  UPLO   - CHARACTER*1.
 24 *           On entry, UPLO specifies whether the matrix is an upper or
 25 *           lower triangular matrix as follows:
 26 *
 27 *              UPLO = 'U' or 'u'   A is an upper triangular matrix.
 28 *
 29 *              UPLO = 'L' or 'l'   A is a lower triangular matrix.
 30 *
 31 *           Unchanged on exit.
 32 *
 33 *  TRANS  - CHARACTER*1.
 34 *           On entry, TRANS specifies the operation to be performed as
 35 *           follows:
 36 *
 37 *              TRANS = 'N' or 'n'   x := A*x.
 38 *
 39 *              TRANS = 'T' or 't'   x := A**T*x.
 40 *
 41 *              TRANS = 'C' or 'c'   x := A**H*x.
 42 *
 43 *           Unchanged on exit.
 44 *
 45 *  DIAG   - CHARACTER*1.
 46 *           On entry, DIAG specifies whether or not A is unit
 47 *           triangular as follows:
 48 *
 49 *              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
 50 *
 51 *              DIAG = 'N' or 'n'   A is not assumed to be unit
 52 *                                  triangular.
 53 *
 54 *           Unchanged on exit.
 55 *
 56 *  N      - INTEGER.
 57 *           On entry, N specifies the order of the matrix A.
 58 *           N must be at least zero.
 59 *           Unchanged on exit.
 60 *
 61 *  A      - COMPLEX          array of DIMENSION ( LDA, n ).
 62 *           Before entry with  UPLO = 'U' or 'u', the leading n by n
 63 *           upper triangular part of the array A must contain the upper
 64 *           triangular matrix and the strictly lower triangular part of
 65 *           A is not referenced.
 66 *           Before entry with UPLO = 'L' or 'l', the leading n by n
 67 *           lower triangular part of the array A must contain the lower
 68 *           triangular matrix and the strictly upper triangular part of
 69 *           A is not referenced.
 70 *           Note that when  DIAG = 'U' or 'u', the diagonal elements of
 71 *           A are not referenced either, but are assumed to be unity.
 72 *           Unchanged on exit.
 73 *
 74 *  LDA    - INTEGER.
 75 *           On entry, LDA specifies the first dimension of A as declared
 76 *           in the calling (sub) program. LDA must be at least
 77 *           max( 1, n ).
 78 *           Unchanged on exit.
 79 *
 80 *  X      - COMPLEX          array of dimension at least
 81 *           ( 1 + ( n - 1 )*abs( INCX ) ).
 82 *           Before entry, the incremented array X must contain the n
 83 *           element vector x. On exit, X is overwritten with the
 84 *           tranformed vector x.
 85 *
 86 *  INCX   - INTEGER.
 87 *           On entry, INCX specifies the increment for the elements of
 88 *           X. INCX must not be zero.
 89 *           Unchanged on exit.
 90 *
 91 *  Further Details
 92 *  ===============
 93 *
 94 *  Level 2 Blas routine.
 95 *  The vector and matrix arguments are not referenced when N = 0, or M = 0
 96 *
 97 *  -- Written on 22-October-1986.
 98 *     Jack Dongarra, Argonne National Lab.
 99 *     Jeremy Du Croz, Nag Central Office.
100 *     Sven Hammarling, Nag Central Office.
101 *     Richard Hanson, Sandia National Labs.
102 *
103 *  =====================================================================
104 *
105 *     .. Parameters ..
106       COMPLEX ZERO
107       PARAMETER (ZERO= (0.0E+0,0.0E+0))
108 *     ..
109 *     .. Local Scalars ..
110       COMPLEX TEMP
111       INTEGER I,INFO,IX,J,JX,KX
112       LOGICAL NOCONJ,NOUNIT
113 *     ..
114 *     .. External Functions ..
115       LOGICAL LSAME
116       EXTERNAL LSAME
117 *     ..
118 *     .. External Subroutines ..
119       EXTERNAL XERBLA
120 *     ..
121 *     .. Intrinsic Functions ..
122       INTRINSIC CONJG,MAX
123 *     ..
124 *
125 *     Test the input parameters.
126 *
127       INFO = 0
128       IF (.NOT.LSAME(UPLO,'U'.AND. .NOT.LSAME(UPLO,'L')) THEN
129           INFO = 1
130       ELSE IF (.NOT.LSAME(TRANS,'N'.AND. .NOT.LSAME(TRANS,'T'.AND.
131      +         .NOT.LSAME(TRANS,'C')) THEN
132           INFO = 2
133       ELSE IF (.NOT.LSAME(DIAG,'U'.AND. .NOT.LSAME(DIAG,'N')) THEN
134           INFO = 3
135       ELSE IF (N.LT.0THEN
136           INFO = 4
137       ELSE IF (LDA.LT.MAX(1,N)) THEN
138           INFO = 6
139       ELSE IF (INCX.EQ.0THEN
140           INFO = 8
141       END IF
142       IF (INFO.NE.0THEN
143           CALL XERBLA('CTRMV ',INFO)
144           RETURN
145       END IF
146 *
147 *     Quick return if possible.
148 *
149       IF (N.EQ.0RETURN
150 *
151       NOCONJ = LSAME(TRANS,'T')
152       NOUNIT = LSAME(DIAG,'N')
153 *
154 *     Set up the start point in X if the increment is not unity. This
155 *     will be  ( N - 1 )*INCX  too small for descending loops.
156 *
157       IF (INCX.LE.0THEN
158           KX = 1 - (N-1)*INCX
159       ELSE IF (INCX.NE.1THEN
160           KX = 1
161       END IF
162 *
163 *     Start the operations. In this version the elements of A are
164 *     accessed sequentially with one pass through A.
165 *
166       IF (LSAME(TRANS,'N')) THEN
167 *
168 *        Form  x := A*x.
169 *
170           IF (LSAME(UPLO,'U')) THEN
171               IF (INCX.EQ.1THEN
172                   DO 20 J = 1,N
173                       IF (X(J).NE.ZERO) THEN
174                           TEMP = X(J)
175                           DO 10 I = 1,J - 1
176                               X(I) = X(I) + TEMP*A(I,J)
177    10                     CONTINUE
178                           IF (NOUNIT) X(J) = X(J)*A(J,J)
179                       END IF
180    20             CONTINUE
181               ELSE
182                   JX = KX
183                   DO 40 J = 1,N
184                       IF (X(JX).NE.ZERO) THEN
185                           TEMP = X(JX)
186                           IX = KX
187                           DO 30 I = 1,J - 1
188                               X(IX) = X(IX) + TEMP*A(I,J)
189                               IX = IX + INCX
190    30                     CONTINUE
191                           IF (NOUNIT) X(JX) = X(JX)*A(J,J)
192                       END IF
193                       JX = JX + INCX
194    40             CONTINUE
195               END IF
196           ELSE
197               IF (INCX.EQ.1THEN
198                   DO 60 J = N,1,-1
199                       IF (X(J).NE.ZERO) THEN
200                           TEMP = X(J)
201                           DO 50 I = N,J + 1,-1
202                               X(I) = X(I) + TEMP*A(I,J)
203    50                     CONTINUE
204                           IF (NOUNIT) X(J) = X(J)*A(J,J)
205                       END IF
206    60             CONTINUE
207               ELSE
208                   KX = KX + (N-1)*INCX
209                   JX = KX
210                   DO 80 J = N,1,-1
211                       IF (X(JX).NE.ZERO) THEN
212                           TEMP = X(JX)
213                           IX = KX
214                           DO 70 I = N,J + 1,-1
215                               X(IX) = X(IX) + TEMP*A(I,J)
216                               IX = IX - INCX
217    70                     CONTINUE
218                           IF (NOUNIT) X(JX) = X(JX)*A(J,J)
219                       END IF
220                       JX = JX - INCX
221    80             CONTINUE
222               END IF
223           END IF
224       ELSE
225 *
226 *        Form  x := A**T*x  or  x := A**H*x.
227 *
228           IF (LSAME(UPLO,'U')) THEN
229               IF (INCX.EQ.1THEN
230                   DO 110 J = N,1,-1
231                       TEMP = X(J)
232                       IF (NOCONJ) THEN
233                           IF (NOUNIT) TEMP = TEMP*A(J,J)
234                           DO 90 I = J - 1,1,-1
235                               TEMP = TEMP + A(I,J)*X(I)
236    90                     CONTINUE
237                       ELSE
238                           IF (NOUNIT) TEMP = TEMP*CONJG(A(J,J))
239                           DO 100 I = J - 1,1,-1
240                               TEMP = TEMP + CONJG(A(I,J))*X(I)
241   100                     CONTINUE
242                       END IF
243                       X(J) = TEMP
244   110             CONTINUE
245               ELSE
246                   JX = KX + (N-1)*INCX
247                   DO 140 J = N,1,-1
248                       TEMP = X(JX)
249                       IX = JX
250                       IF (NOCONJ) THEN
251                           IF (NOUNIT) TEMP = TEMP*A(J,J)
252                           DO 120 I = J - 1,1,-1
253                               IX = IX - INCX
254                               TEMP = TEMP + A(I,J)*X(IX)
255   120                     CONTINUE
256                       ELSE
257                           IF (NOUNIT) TEMP = TEMP*CONJG(A(J,J))
258                           DO 130 I = J - 1,1,-1
259                               IX = IX - INCX
260                               TEMP = TEMP + CONJG(A(I,J))*X(IX)
261   130                     CONTINUE
262                       END IF
263                       X(JX) = TEMP
264                       JX = JX - INCX
265   140             CONTINUE
266               END IF
267           ELSE
268               IF (INCX.EQ.1THEN
269                   DO 170 J = 1,N
270                       TEMP = X(J)
271                       IF (NOCONJ) THEN
272                           IF (NOUNIT) TEMP = TEMP*A(J,J)
273                           DO 150 I = J + 1,N
274                               TEMP = TEMP + A(I,J)*X(I)
275   150                     CONTINUE
276                       ELSE
277                           IF (NOUNIT) TEMP = TEMP*CONJG(A(J,J))
278                           DO 160 I = J + 1,N
279                               TEMP = TEMP + CONJG(A(I,J))*X(I)
280   160                     CONTINUE
281                       END IF
282                       X(J) = TEMP
283   170             CONTINUE
284               ELSE
285                   JX = KX
286                   DO 200 J = 1,N
287                       TEMP = X(JX)
288                       IX = JX
289                       IF (NOCONJ) THEN
290                           IF (NOUNIT) TEMP = TEMP*A(J,J)
291                           DO 180 I = J + 1,N
292                               IX = IX + INCX
293                               TEMP = TEMP + A(I,J)*X(IX)
294   180                     CONTINUE
295                       ELSE
296                           IF (NOUNIT) TEMP = TEMP*CONJG(A(J,J))
297                           DO 190 I = J + 1,N
298                               IX = IX + INCX
299                               TEMP = TEMP + CONJG(A(I,J))*X(IX)
300   190                     CONTINUE
301                       END IF
302                       X(JX) = TEMP
303                       JX = JX + INCX
304   200             CONTINUE
305               END IF
306           END IF
307       END IF
308 *
309       RETURN
310 *
311 *     End of CTRMV .
312 *
313       END