1       SUBROUTINE CTRSV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX)
  2 *     .. Scalar Arguments ..
  3       INTEGER INCX,LDA,N
  4       CHARACTER DIAG,TRANS,UPLO
  5 *     ..
  6 *     .. Array Arguments ..
  7       COMPLEX A(LDA,*),X(*)
  8 *     ..
  9 *
 10 *  Purpose
 11 *  =======
 12 *
 13 *  CTRSV  solves one of the systems of equations
 14 *
 15 *     A*x = b,   or   A**T*x = b,   or   A**H*x = b,
 16 *
 17 *  where b and x are n element vectors and A is an n by n unit, or
 18 *  non-unit, upper or lower triangular matrix.
 19 *
 20 *  No test for singularity or near-singularity is included in this
 21 *  routine. Such tests must be performed before calling this routine.
 22 *
 23 *  Arguments
 24 *  ==========
 25 *
 26 *  UPLO   - CHARACTER*1.
 27 *           On entry, UPLO specifies whether the matrix is an upper or
 28 *           lower triangular matrix as follows:
 29 *
 30 *              UPLO = 'U' or 'u'   A is an upper triangular matrix.
 31 *
 32 *              UPLO = 'L' or 'l'   A is a lower triangular matrix.
 33 *
 34 *           Unchanged on exit.
 35 *
 36 *  TRANS  - CHARACTER*1.
 37 *           On entry, TRANS specifies the equations to be solved as
 38 *           follows:
 39 *
 40 *              TRANS = 'N' or 'n'   A*x = b.
 41 *
 42 *              TRANS = 'T' or 't'   A**T*x = b.
 43 *
 44 *              TRANS = 'C' or 'c'   A**H*x = b.
 45 *
 46 *           Unchanged on exit.
 47 *
 48 *  DIAG   - CHARACTER*1.
 49 *           On entry, DIAG specifies whether or not A is unit
 50 *           triangular as follows:
 51 *
 52 *              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
 53 *
 54 *              DIAG = 'N' or 'n'   A is not assumed to be unit
 55 *                                  triangular.
 56 *
 57 *           Unchanged on exit.
 58 *
 59 *  N      - INTEGER.
 60 *           On entry, N specifies the order of the matrix A.
 61 *           N must be at least zero.
 62 *           Unchanged on exit.
 63 *
 64 *  A      - COMPLEX          array of DIMENSION ( LDA, n ).
 65 *           Before entry with  UPLO = 'U' or 'u', the leading n by n
 66 *           upper triangular part of the array A must contain the upper
 67 *           triangular matrix and the strictly lower triangular part of
 68 *           A is not referenced.
 69 *           Before entry with UPLO = 'L' or 'l', the leading n by n
 70 *           lower triangular part of the array A must contain the lower
 71 *           triangular matrix and the strictly upper triangular part of
 72 *           A is not referenced.
 73 *           Note that when  DIAG = 'U' or 'u', the diagonal elements of
 74 *           A are not referenced either, but are assumed to be unity.
 75 *           Unchanged on exit.
 76 *
 77 *  LDA    - INTEGER.
 78 *           On entry, LDA specifies the first dimension of A as declared
 79 *           in the calling (sub) program. LDA must be at least
 80 *           max( 1, n ).
 81 *           Unchanged on exit.
 82 *
 83 *  X      - COMPLEX          array of dimension at least
 84 *           ( 1 + ( n - 1 )*abs( INCX ) ).
 85 *           Before entry, the incremented array X must contain the n
 86 *           element right-hand side vector b. On exit, X is overwritten
 87 *           with the solution vector x.
 88 *
 89 *  INCX   - INTEGER.
 90 *           On entry, INCX specifies the increment for the elements of
 91 *           X. INCX must not be zero.
 92 *           Unchanged on exit.
 93 *
 94 *  Further Details
 95 *  ===============
 96 *
 97 *  Level 2 Blas routine.
 98 *
 99 *  -- Written on 22-October-1986.
100 *     Jack Dongarra, Argonne National Lab.
101 *     Jeremy Du Croz, Nag Central Office.
102 *     Sven Hammarling, Nag Central Office.
103 *     Richard Hanson, Sandia National Labs.
104 *
105 *  =====================================================================
106 *
107 *     .. Parameters ..
108       COMPLEX ZERO
109       PARAMETER (ZERO= (0.0E+0,0.0E+0))
110 *     ..
111 *     .. Local Scalars ..
112       COMPLEX TEMP
113       INTEGER I,INFO,IX,J,JX,KX
114       LOGICAL NOCONJ,NOUNIT
115 *     ..
116 *     .. External Functions ..
117       LOGICAL LSAME
118       EXTERNAL LSAME
119 *     ..
120 *     .. External Subroutines ..
121       EXTERNAL XERBLA
122 *     ..
123 *     .. Intrinsic Functions ..
124       INTRINSIC CONJG,MAX
125 *     ..
126 *
127 *     Test the input parameters.
128 *
129       INFO = 0
130       IF (.NOT.LSAME(UPLO,'U'.AND. .NOT.LSAME(UPLO,'L')) THEN
131           INFO = 1
132       ELSE IF (.NOT.LSAME(TRANS,'N'.AND. .NOT.LSAME(TRANS,'T'.AND.
133      +         .NOT.LSAME(TRANS,'C')) THEN
134           INFO = 2
135       ELSE IF (.NOT.LSAME(DIAG,'U'.AND. .NOT.LSAME(DIAG,'N')) THEN
136           INFO = 3
137       ELSE IF (N.LT.0THEN
138           INFO = 4
139       ELSE IF (LDA.LT.MAX(1,N)) THEN
140           INFO = 6
141       ELSE IF (INCX.EQ.0THEN
142           INFO = 8
143       END IF
144       IF (INFO.NE.0THEN
145           CALL XERBLA('CTRSV ',INFO)
146           RETURN
147       END IF
148 *
149 *     Quick return if possible.
150 *
151       IF (N.EQ.0RETURN
152 *
153       NOCONJ = LSAME(TRANS,'T')
154       NOUNIT = LSAME(DIAG,'N')
155 *
156 *     Set up the start point in X if the increment is not unity. This
157 *     will be  ( N - 1 )*INCX  too small for descending loops.
158 *
159       IF (INCX.LE.0THEN
160           KX = 1 - (N-1)*INCX
161       ELSE IF (INCX.NE.1THEN
162           KX = 1
163       END IF
164 *
165 *     Start the operations. In this version the elements of A are
166 *     accessed sequentially with one pass through A.
167 *
168       IF (LSAME(TRANS,'N')) THEN
169 *
170 *        Form  x := inv( A )*x.
171 *
172           IF (LSAME(UPLO,'U')) THEN
173               IF (INCX.EQ.1THEN
174                   DO 20 J = N,1,-1
175                       IF (X(J).NE.ZERO) THEN
176                           IF (NOUNIT) X(J) = X(J)/A(J,J)
177                           TEMP = X(J)
178                           DO 10 I = J - 1,1,-1
179                               X(I) = X(I) - TEMP*A(I,J)
180    10                     CONTINUE
181                       END IF
182    20             CONTINUE
183               ELSE
184                   JX = KX + (N-1)*INCX
185                   DO 40 J = N,1,-1
186                       IF (X(JX).NE.ZERO) THEN
187                           IF (NOUNIT) X(JX) = X(JX)/A(J,J)
188                           TEMP = X(JX)
189                           IX = JX
190                           DO 30 I = J - 1,1,-1
191                               IX = IX - INCX
192                               X(IX) = X(IX) - TEMP*A(I,J)
193    30                     CONTINUE
194                       END IF
195                       JX = JX - INCX
196    40             CONTINUE
197               END IF
198           ELSE
199               IF (INCX.EQ.1THEN
200                   DO 60 J = 1,N
201                       IF (X(J).NE.ZERO) THEN
202                           IF (NOUNIT) X(J) = X(J)/A(J,J)
203                           TEMP = X(J)
204                           DO 50 I = J + 1,N
205                               X(I) = X(I) - TEMP*A(I,J)
206    50                     CONTINUE
207                       END IF
208    60             CONTINUE
209               ELSE
210                   JX = KX
211                   DO 80 J = 1,N
212                       IF (X(JX).NE.ZERO) THEN
213                           IF (NOUNIT) X(JX) = X(JX)/A(J,J)
214                           TEMP = X(JX)
215                           IX = JX
216                           DO 70 I = J + 1,N
217                               IX = IX + INCX
218                               X(IX) = X(IX) - TEMP*A(I,J)
219    70                     CONTINUE
220                       END IF
221                       JX = JX + INCX
222    80             CONTINUE
223               END IF
224           END IF
225       ELSE
226 *
227 *        Form  x := inv( A**T )*x  or  x := inv( A**H )*x.
228 *
229           IF (LSAME(UPLO,'U')) THEN
230               IF (INCX.EQ.1THEN
231                   DO 110 J = 1,N
232                       TEMP = X(J)
233                       IF (NOCONJ) THEN
234                           DO 90 I = 1,J - 1
235                               TEMP = TEMP - A(I,J)*X(I)
236    90                     CONTINUE
237                           IF (NOUNIT) TEMP = TEMP/A(J,J)
238                       ELSE
239                           DO 100 I = 1,J - 1
240                               TEMP = TEMP - CONJG(A(I,J))*X(I)
241   100                     CONTINUE
242                           IF (NOUNIT) TEMP = TEMP/CONJG(A(J,J))
243                       END IF
244                       X(J) = TEMP
245   110             CONTINUE
246               ELSE
247                   JX = KX
248                   DO 140 J = 1,N
249                       IX = KX
250                       TEMP = X(JX)
251                       IF (NOCONJ) THEN
252                           DO 120 I = 1,J - 1
253                               TEMP = TEMP - A(I,J)*X(IX)
254                               IX = IX + INCX
255   120                     CONTINUE
256                           IF (NOUNIT) TEMP = TEMP/A(J,J)
257                       ELSE
258                           DO 130 I = 1,J - 1
259                               TEMP = TEMP - CONJG(A(I,J))*X(IX)
260                               IX = IX + INCX
261   130                     CONTINUE
262                           IF (NOUNIT) TEMP = TEMP/CONJG(A(J,J))
263                       END IF
264                       X(JX) = TEMP
265                       JX = JX + INCX
266   140             CONTINUE
267               END IF
268           ELSE
269               IF (INCX.EQ.1THEN
270                   DO 170 J = N,1,-1
271                       TEMP = X(J)
272                       IF (NOCONJ) THEN
273                           DO 150 I = N,J + 1,-1
274                               TEMP = TEMP - A(I,J)*X(I)
275   150                     CONTINUE
276                           IF (NOUNIT) TEMP = TEMP/A(J,J)
277                       ELSE
278                           DO 160 I = N,J + 1,-1
279                               TEMP = TEMP - CONJG(A(I,J))*X(I)
280   160                     CONTINUE
281                           IF (NOUNIT) TEMP = TEMP/CONJG(A(J,J))
282                       END IF
283                       X(J) = TEMP
284   170             CONTINUE
285               ELSE
286                   KX = KX + (N-1)*INCX
287                   JX = KX
288                   DO 200 J = N,1,-1
289                       IX = KX
290                       TEMP = X(JX)
291                       IF (NOCONJ) THEN
292                           DO 180 I = N,J + 1,-1
293                               TEMP = TEMP - A(I,J)*X(IX)
294                               IX = IX - INCX
295   180                     CONTINUE
296                           IF (NOUNIT) TEMP = TEMP/A(J,J)
297                       ELSE
298                           DO 190 I = N,J + 1,-1
299                               TEMP = TEMP - CONJG(A(I,J))*X(IX)
300                               IX = IX - INCX
301   190                     CONTINUE
302                           IF (NOUNIT) TEMP = TEMP/CONJG(A(J,J))
303                       END IF
304                       X(JX) = TEMP
305                       JX = JX - INCX
306   200             CONTINUE
307               END IF
308           END IF
309       END IF
310 *
311       RETURN
312 *
313 *     End of CTRSV .
314 *
315       END