1       SUBROUTINE DSPMV(UPLO,N,ALPHA,AP,X,INCX,BETA,Y,INCY)
  2 *     .. Scalar Arguments ..
  3       DOUBLE PRECISION ALPHA,BETA
  4       INTEGER INCX,INCY,N
  5       CHARACTER UPLO
  6 *     ..
  7 *     .. Array Arguments ..
  8       DOUBLE PRECISION AP(*),X(*),Y(*)
  9 *     ..
 10 *
 11 *  Purpose
 12 *  =======
 13 *
 14 *  DSPMV  performs the matrix-vector operation
 15 *
 16 *     y := alpha*A*x + beta*y,
 17 *
 18 *  where alpha and beta are scalars, x and y are n element vectors and
 19 *  A is an n by n symmetric matrix, supplied in packed form.
 20 *
 21 *  Arguments
 22 *  ==========
 23 *
 24 *  UPLO   - CHARACTER*1.
 25 *           On entry, UPLO specifies whether the upper or lower
 26 *           triangular part of the matrix A is supplied in the packed
 27 *           array AP as follows:
 28 *
 29 *              UPLO = 'U' or 'u'   The upper triangular part of A is
 30 *                                  supplied in AP.
 31 *
 32 *              UPLO = 'L' or 'l'   The lower triangular part of A is
 33 *                                  supplied in AP.
 34 *
 35 *           Unchanged on exit.
 36 *
 37 *  N      - INTEGER.
 38 *           On entry, N specifies the order of the matrix A.
 39 *           N must be at least zero.
 40 *           Unchanged on exit.
 41 *
 42 *  ALPHA  - DOUBLE PRECISION.
 43 *           On entry, ALPHA specifies the scalar alpha.
 44 *           Unchanged on exit.
 45 *
 46 *  AP     - DOUBLE PRECISION array of DIMENSION at least
 47 *           ( ( n*( n + 1 ) )/2 ).
 48 *           Before entry with UPLO = 'U' or 'u', the array AP must
 49 *           contain the upper triangular part of the symmetric matrix
 50 *           packed sequentially, column by column, so that AP( 1 )
 51 *           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
 52 *           and a( 2, 2 ) respectively, and so on.
 53 *           Before entry with UPLO = 'L' or 'l', the array AP must
 54 *           contain the lower triangular part of the symmetric matrix
 55 *           packed sequentially, column by column, so that AP( 1 )
 56 *           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
 57 *           and a( 3, 1 ) respectively, and so on.
 58 *           Unchanged on exit.
 59 *
 60 *  X      - DOUBLE PRECISION array of dimension at least
 61 *           ( 1 + ( n - 1 )*abs( INCX ) ).
 62 *           Before entry, the incremented array X must contain the n
 63 *           element vector x.
 64 *           Unchanged on exit.
 65 *
 66 *  INCX   - INTEGER.
 67 *           On entry, INCX specifies the increment for the elements of
 68 *           X. INCX must not be zero.
 69 *           Unchanged on exit.
 70 *
 71 *  BETA   - DOUBLE PRECISION.
 72 *           On entry, BETA specifies the scalar beta. When BETA is
 73 *           supplied as zero then Y need not be set on input.
 74 *           Unchanged on exit.
 75 *
 76 *  Y      - DOUBLE PRECISION array of dimension at least
 77 *           ( 1 + ( n - 1 )*abs( INCY ) ).
 78 *           Before entry, the incremented array Y must contain the n
 79 *           element vector y. On exit, Y is overwritten by the updated
 80 *           vector y.
 81 *
 82 *  INCY   - INTEGER.
 83 *           On entry, INCY specifies the increment for the elements of
 84 *           Y. INCY must not be zero.
 85 *           Unchanged on exit.
 86 *
 87 *  Further Details
 88 *  ===============
 89 *
 90 *  Level 2 Blas routine.
 91 *  The vector and matrix arguments are not referenced when N = 0, or M = 0
 92 *
 93 *  -- Written on 22-October-1986.
 94 *     Jack Dongarra, Argonne National Lab.
 95 *     Jeremy Du Croz, Nag Central Office.
 96 *     Sven Hammarling, Nag Central Office.
 97 *     Richard Hanson, Sandia National Labs.
 98 *
 99 *  =====================================================================
100 *
101 *     .. Parameters ..
102       DOUBLE PRECISION ONE,ZERO
103       PARAMETER (ONE=1.0D+0,ZERO=0.0D+0)
104 *     ..
105 *     .. Local Scalars ..
106       DOUBLE PRECISION TEMP1,TEMP2
107       INTEGER I,INFO,IX,IY,J,JX,JY,K,KK,KX,KY
108 *     ..
109 *     .. External Functions ..
110       LOGICAL LSAME
111       EXTERNAL LSAME
112 *     ..
113 *     .. External Subroutines ..
114       EXTERNAL XERBLA
115 *     ..
116 *
117 *     Test the input parameters.
118 *
119       INFO = 0
120       IF (.NOT.LSAME(UPLO,'U'.AND. .NOT.LSAME(UPLO,'L')) THEN
121           INFO = 1
122       ELSE IF (N.LT.0THEN
123           INFO = 2
124       ELSE IF (INCX.EQ.0THEN
125           INFO = 6
126       ELSE IF (INCY.EQ.0THEN
127           INFO = 9
128       END IF
129       IF (INFO.NE.0THEN
130           CALL XERBLA('DSPMV ',INFO)
131           RETURN
132       END IF
133 *
134 *     Quick return if possible.
135 *
136       IF ((N.EQ.0.OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
137 *
138 *     Set up the start points in  X  and  Y.
139 *
140       IF (INCX.GT.0THEN
141           KX = 1
142       ELSE
143           KX = 1 - (N-1)*INCX
144       END IF
145       IF (INCY.GT.0THEN
146           KY = 1
147       ELSE
148           KY = 1 - (N-1)*INCY
149       END IF
150 *
151 *     Start the operations. In this version the elements of the array AP
152 *     are accessed sequentially with one pass through AP.
153 *
154 *     First form  y := beta*y.
155 *
156       IF (BETA.NE.ONE) THEN
157           IF (INCY.EQ.1THEN
158               IF (BETA.EQ.ZERO) THEN
159                   DO 10 I = 1,N
160                       Y(I) = ZERO
161    10             CONTINUE
162               ELSE
163                   DO 20 I = 1,N
164                       Y(I) = BETA*Y(I)
165    20             CONTINUE
166               END IF
167           ELSE
168               IY = KY
169               IF (BETA.EQ.ZERO) THEN
170                   DO 30 I = 1,N
171                       Y(IY) = ZERO
172                       IY = IY + INCY
173    30             CONTINUE
174               ELSE
175                   DO 40 I = 1,N
176                       Y(IY) = BETA*Y(IY)
177                       IY = IY + INCY
178    40             CONTINUE
179               END IF
180           END IF
181       END IF
182       IF (ALPHA.EQ.ZERO) RETURN
183       KK = 1
184       IF (LSAME(UPLO,'U')) THEN
185 *
186 *        Form  y  when AP contains the upper triangle.
187 *
188           IF ((INCX.EQ.1.AND. (INCY.EQ.1)) THEN
189               DO 60 J = 1,N
190                   TEMP1 = ALPHA*X(J)
191                   TEMP2 = ZERO
192                   K = KK
193                   DO 50 I = 1,J - 1
194                       Y(I) = Y(I) + TEMP1*AP(K)
195                       TEMP2 = TEMP2 + AP(K)*X(I)
196                       K = K + 1
197    50             CONTINUE
198                   Y(J) = Y(J) + TEMP1*AP(KK+J-1+ ALPHA*TEMP2
199                   KK = KK + J
200    60         CONTINUE
201           ELSE
202               JX = KX
203               JY = KY
204               DO 80 J = 1,N
205                   TEMP1 = ALPHA*X(JX)
206                   TEMP2 = ZERO
207                   IX = KX
208                   IY = KY
209                   DO 70 K = KK,KK + J - 2
210                       Y(IY) = Y(IY) + TEMP1*AP(K)
211                       TEMP2 = TEMP2 + AP(K)*X(IX)
212                       IX = IX + INCX
213                       IY = IY + INCY
214    70             CONTINUE
215                   Y(JY) = Y(JY) + TEMP1*AP(KK+J-1+ ALPHA*TEMP2
216                   JX = JX + INCX
217                   JY = JY + INCY
218                   KK = KK + J
219    80         CONTINUE
220           END IF
221       ELSE
222 *
223 *        Form  y  when AP contains the lower triangle.
224 *
225           IF ((INCX.EQ.1.AND. (INCY.EQ.1)) THEN
226               DO 100 J = 1,N
227                   TEMP1 = ALPHA*X(J)
228                   TEMP2 = ZERO
229                   Y(J) = Y(J) + TEMP1*AP(KK)
230                   K = KK + 1
231                   DO 90 I = J + 1,N
232                       Y(I) = Y(I) + TEMP1*AP(K)
233                       TEMP2 = TEMP2 + AP(K)*X(I)
234                       K = K + 1
235    90             CONTINUE
236                   Y(J) = Y(J) + ALPHA*TEMP2
237                   KK = KK + (N-J+1)
238   100         CONTINUE
239           ELSE
240               JX = KX
241               JY = KY
242               DO 120 J = 1,N
243                   TEMP1 = ALPHA*X(JX)
244                   TEMP2 = ZERO
245                   Y(JY) = Y(JY) + TEMP1*AP(KK)
246                   IX = JX
247                   IY = JY
248                   DO 110 K = KK + 1,KK + N - J
249                       IX = IX + INCX
250                       IY = IY + INCY
251                       Y(IY) = Y(IY) + TEMP1*AP(K)
252                       TEMP2 = TEMP2 + AP(K)*X(IX)
253   110             CONTINUE
254                   Y(JY) = Y(JY) + ALPHA*TEMP2
255                   JX = JX + INCX
256                   JY = JY + INCY
257                   KK = KK + (N-J+1)
258   120         CONTINUE
259           END IF
260       END IF
261 *
262       RETURN
263 *
264 *     End of DSPMV .
265 *
266       END